Home
Class 12
MATHS
If 2f(x) + 3f((1)/(x))= (1)/(x)-2, x ne ...

If `2f(x) + 3f((1)/(x))= (1)/(x)-2, x ne 0` then `int_(1)^(2) f(x)dx`=

A

`-(2)/(5) log 2 + (1)/(2)`

B

`-(2)/(5) log 2- (1)/(2)`

C

`(2)/(5) log 2+ (1)/(2)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the integral \( \int_{1}^{2} f(x) \, dx \) given the equation: \[ 2f(x) + 3f\left(\frac{1}{x}\right) = \frac{1}{x} - 2 \] ### Step 1: Substitute \( x \) with \( \frac{1}{x} \) We will replace \( x \) with \( \frac{1}{x} \) in the original equation: \[ 2f\left(\frac{1}{x}\right) + 3f(x) = x - 2 \] ### Step 2: Write the two equations Now we have two equations: 1. \( 2f(x) + 3f\left(\frac{1}{x}\right) = \frac{1}{x} - 2 \) (Equation 1) 2. \( 2f\left(\frac{1}{x}\right) + 3f(x) = x - 2 \) (Equation 2) ### Step 3: Multiply Equation 1 by 2 and Equation 2 by 3 Multiply Equation 1 by 2: \[ 4f(x) + 6f\left(\frac{1}{x}\right) = \frac{2}{x} - 4 \] Multiply Equation 2 by 3: \[ 6f\left(\frac{1}{x}\right) + 9f(x) = 3x - 6 \] ### Step 4: Subtract the two equations Now, we will subtract the modified Equation 1 from the modified Equation 2: \[ (6f\left(\frac{1}{x}\right) + 9f(x)) - (4f(x) + 6f\left(\frac{1}{x}\right)) = (3x - 6) - \left(\frac{2}{x} - 4\right) \] This simplifies to: \[ 3f(x) = 3x - 6 + 4 - \frac{2}{x} \] \[ 3f(x) = 3x - 2 - \frac{2}{x} \] ### Step 5: Solve for \( f(x) \) Now, divide both sides by 3: \[ f(x) = x - \frac{2}{3} - \frac{2}{3x} \] ### Step 6: Evaluate the integral \( \int_{1}^{2} f(x) \, dx \) Now we can evaluate the integral: \[ \int_{1}^{2} f(x) \, dx = \int_{1}^{2} \left( x - \frac{2}{3} - \frac{2}{3x} \right) \, dx \] ### Step 7: Break down the integral This can be broken down into three separate integrals: \[ \int_{1}^{2} x \, dx - \frac{2}{3} \int_{1}^{2} 1 \, dx - \frac{2}{3} \int_{1}^{2} \frac{1}{x} \, dx \] ### Step 8: Calculate each integral 1. \( \int_{1}^{2} x \, dx = \left[ \frac{x^2}{2} \right]_{1}^{2} = \frac{4}{2} - \frac{1}{2} = \frac{3}{2} \) 2. \( \int_{1}^{2} 1 \, dx = \left[ x \right]_{1}^{2} = 2 - 1 = 1 \) 3. \( \int_{1}^{2} \frac{1}{x} \, dx = \left[ \log x \right]_{1}^{2} = \log 2 - \log 1 = \log 2 \) ### Step 9: Combine the results Putting it all together: \[ \int_{1}^{2} f(x) \, dx = \frac{3}{2} - \frac{2}{3} \cdot 1 - \frac{2}{3} \cdot \log 2 \] Calculating \( -\frac{2}{3} \): \[ = \frac{3}{2} - \frac{2}{3} - \frac{2}{3} \log 2 \] ### Step 10: Find a common denominator The common denominator for \( \frac{3}{2} \) and \( \frac{2}{3} \) is 6: \[ \frac{3}{2} = \frac{9}{6}, \quad \frac{2}{3} = \frac{4}{6} \] Thus, \[ \int_{1}^{2} f(x) \, dx = \frac{9}{6} - \frac{4}{6} - \frac{2}{3} \log 2 = \frac{5}{6} - \frac{2}{3} \log 2 \] ### Final Result Thus, the value of the integral \( \int_{1}^{2} f(x) \, dx \) is: \[ \int_{1}^{2} f(x) \, dx = \frac{5}{6} - \frac{2}{3} \log 2 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) (Multiple Choice Questions)|47 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

Statement-If 2f(x)+3f((1)/(x))=(1)/(x)-2,x!=0, then int_(1)^(2)f(x)dx=-(2)/(5)log2+(1)/(2). Statement- -2f(x)=-(2)/(5x)+3(x)/(5)-(2)/(5)

If a f(x)+b f((1)/(x))=(1)/(x)-5,x ne 0,a ne b , then int_1^2 f(x)dx equals

If for non zero x , 3f(x)+4f((1)/(x))=(1)/(x)-10 , then the value of int_(2)^(3)f(x)dx is

If 2f(x) - 3 f(1//x) = x," then " int_(1)^(2) f(x) dx is equal to

If f(x)=(1)/(x)-1 where x ne 0, then: f(x)-2.f(2x)=

if f(x)=|x-1| then int_(0)^(2)f(x)dx is

If : x(x^(4)+1).f(x)=1 , then : int_(1)^(2)f(x)dx=

If f(x)=(1)/(x)-1 where x ne 0, then: f(x)+f(-x)+2=

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (1) (Multiple Choice Questions)
  1. If int(-2)^(3) f (x) dx= 5 and int(1)^(3) [2-f(x)] dx=6, then int(-2)^...

    Text Solution

    |

  2. If int(-1)^(4) f(x) dx= 4 and int(2)^(4) [3-f(x)] dx= 7, then the valu...

    Text Solution

    |

  3. The value of the integral Sigma(r=1)^(n) int(0)^(1) f(r-1 +x) dx is

    Text Solution

    |

  4. The value of int(0)^(100) e^(x- [x])dx is

    Text Solution

    |

  5. If f(x) is a function satisfying f((1)/(x)) + x^(2) f(x) =0 for all no...

    Text Solution

    |

  6. If 2f(x) + 3f((1)/(x))= (1)/(x)-2, x ne 0 then int(1)^(2) f(x)dx=

    Text Solution

    |

  7. The value of the integral int(0)^(oo) (x log x)/((1+x^(2))^(2)) dx is

    Text Solution

    |

  8. int(0)^(1) "tan"^(-1) (2x-1)/({1+x-x^(2)})dx=

    Text Solution

    |

  9. The value of int(1//e)^(tan x) (t)/(1+ t^(2)) dt+ int(1//e)^(cot x) (1...

    Text Solution

    |

  10. int(0)^(pi) sin^(5) ((x)/(2))dx equals

    Text Solution

    |

  11. If int(0)^(pi//2) cos^(m) x sin^(m) x dx= lamda int(0)^(pi//2) sin^(m)...

    Text Solution

    |

  12. The value of int(1)^(e^(37)) (pi sin (pi ln x))/(x) dx is

    Text Solution

    |

  13. If int(-2)^(5) f(x) dx= 7.5^(3)- 7(-2)^(3) then f(x) is equal to

    Text Solution

    |

  14. Let (d)/(dx) F (x) = (e^(sin x))/(x), x gt 0. If int(1)^(4) (2xe^(sin ...

    Text Solution

    |

  15. Let (d)/(dx)F (x)= (e^(sin x))/(x), x gt 0. If int(1)^(4) (3x^2)/(x^3)...

    Text Solution

    |

  16. (1)/(c ) int(a c)^(bc) f((x)/(c ))dx=

    Text Solution

    |

  17. If A= int(0)^(1) (dx)/(sqrt(1+x^(4))) and B= (pi)/(4) then

    Text Solution

    |

  18. If g(x)=int(0)^(x)cos^(4) t dt , then g(x+pi) equals

    Text Solution

    |

  19. int(-a)^(a) f (x) dx is equal to

    Text Solution

    |

  20. int(1//2)^(2) |log(10) x| dx=

    Text Solution

    |