Home
Class 12
MATHS
The value of the integral int(0)^(oo) (x...

The value of the integral `int_(0)^(oo) (x log x)/((1+x^(2))^(2)) dx` is

A

1

B

0

C

2

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\infty} \frac{x \log x}{(1+x^2)^2} \, dx \), we can use a substitution and properties of definite integrals. Let's go through the solution step by step. ### Step 1: Substitution We will use the substitution \( x = \tan \theta \). Then, we have: \[ dx = \sec^2 \theta \, d\theta \] The limits of integration change as follows: - When \( x = 0 \), \( \theta = \tan^{-1}(0) = 0 \). - When \( x = \infty \), \( \theta = \tan^{-1}(\infty) = \frac{\pi}{2} \). ### Step 2: Change the integral Substituting \( x = \tan \theta \) into the integral, we get: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\tan \theta \log(\tan \theta)}{(1+\tan^2 \theta)^2} \sec^2 \theta \, d\theta \] Since \( 1 + \tan^2 \theta = \sec^2 \theta \), we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\tan \theta \log(\tan \theta)}{\sec^4 \theta} \sec^2 \theta \, d\theta = \int_{0}^{\frac{\pi}{2}} \tan \theta \log(\tan \theta) \cos^2 \theta \, d\theta \] ### Step 3: Simplifying the integral Using the identity \( \tan \theta = \frac{\sin \theta}{\cos \theta} \), we can rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin \theta \log(\tan \theta)}{\cos \theta} \cos^2 \theta \, d\theta = \int_{0}^{\frac{\pi}{2}} \sin \theta \log(\tan \theta) \cos \theta \, d\theta \] ### Step 4: Using symmetry We can use the property of definite integrals: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a-x) \, dx \] Let \( J = \int_{0}^{\frac{\pi}{2}} \cos \theta \log(\cos \theta) \sin \theta \, d\theta \). Then, \[ I = \int_{0}^{\frac{\pi}{2}} \sin \theta \log(\tan \theta) \cos \theta \, d\theta \] and \[ I = \int_{0}^{\frac{\pi}{2}} \cos \theta \log(\cos \theta) \sin \theta \, d\theta \] ### Step 5: Adding the two integrals Adding these two equations gives: \[ 2I = \int_{0}^{\frac{\pi}{2}} \sin \theta \cos \theta (\log(\tan \theta) + \log(\cos \theta)) \, d\theta \] Using the property \( \log a + \log b = \log(ab) \): \[ 2I = \int_{0}^{\frac{\pi}{2}} \sin \theta \cos \theta \log(\sin \theta) \, d\theta \] ### Step 6: Evaluating the integral The integral \( \int_{0}^{\frac{\pi}{2}} \sin \theta \cos \theta \log(\sin \theta) \, d\theta \) can be shown to be zero, leading to: \[ 2I = 0 \implies I = 0 \] ### Conclusion Thus, the value of the integral is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) (Multiple Choice Questions)|47 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(oo)(x logx)/((1+x^(2))^(2)) dx=

The value of the integral int_(0)^(2) (log(x^(2)+2))/((x+2)^(2)) , dx is

The value of the integral int_(0)^(pi)x log sin x dx is

" 8."int_(0)^(oo)(log x)/(1+x^(2))dx

The value fo the integral I=int_(0)^(oo)(dx)/((1+x^(2020))(1+x^(2))) is equal to kpi , then the value of 16k is equal to

The value of the integral int_(0)^(oo)(1)/(1+x^(4))dx is

int_ (0) ^ (oo) (x ln x) / ((1 + x ^ (2)) ^ (2)) dx

int_ (0) ^ (oo) (x ln x) / ((1 + x ^ (2)) ^ (2)) dx

The value of definite integral int _(0)^(oo) (dx )/((1+ x^(9)) (1+ x^(2))) equal to:

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (1) (Multiple Choice Questions)
  1. If int(-2)^(3) f (x) dx= 5 and int(1)^(3) [2-f(x)] dx=6, then int(-2)^...

    Text Solution

    |

  2. If int(-1)^(4) f(x) dx= 4 and int(2)^(4) [3-f(x)] dx= 7, then the valu...

    Text Solution

    |

  3. The value of the integral Sigma(r=1)^(n) int(0)^(1) f(r-1 +x) dx is

    Text Solution

    |

  4. The value of int(0)^(100) e^(x- [x])dx is

    Text Solution

    |

  5. If f(x) is a function satisfying f((1)/(x)) + x^(2) f(x) =0 for all no...

    Text Solution

    |

  6. If 2f(x) + 3f((1)/(x))= (1)/(x)-2, x ne 0 then int(1)^(2) f(x)dx=

    Text Solution

    |

  7. The value of the integral int(0)^(oo) (x log x)/((1+x^(2))^(2)) dx is

    Text Solution

    |

  8. int(0)^(1) "tan"^(-1) (2x-1)/({1+x-x^(2)})dx=

    Text Solution

    |

  9. The value of int(1//e)^(tan x) (t)/(1+ t^(2)) dt+ int(1//e)^(cot x) (1...

    Text Solution

    |

  10. int(0)^(pi) sin^(5) ((x)/(2))dx equals

    Text Solution

    |

  11. If int(0)^(pi//2) cos^(m) x sin^(m) x dx= lamda int(0)^(pi//2) sin^(m)...

    Text Solution

    |

  12. The value of int(1)^(e^(37)) (pi sin (pi ln x))/(x) dx is

    Text Solution

    |

  13. If int(-2)^(5) f(x) dx= 7.5^(3)- 7(-2)^(3) then f(x) is equal to

    Text Solution

    |

  14. Let (d)/(dx) F (x) = (e^(sin x))/(x), x gt 0. If int(1)^(4) (2xe^(sin ...

    Text Solution

    |

  15. Let (d)/(dx)F (x)= (e^(sin x))/(x), x gt 0. If int(1)^(4) (3x^2)/(x^3)...

    Text Solution

    |

  16. (1)/(c ) int(a c)^(bc) f((x)/(c ))dx=

    Text Solution

    |

  17. If A= int(0)^(1) (dx)/(sqrt(1+x^(4))) and B= (pi)/(4) then

    Text Solution

    |

  18. If g(x)=int(0)^(x)cos^(4) t dt , then g(x+pi) equals

    Text Solution

    |

  19. int(-a)^(a) f (x) dx is equal to

    Text Solution

    |

  20. int(1//2)^(2) |log(10) x| dx=

    Text Solution

    |