Home
Class 12
MATHS
The value of int(1//e)^(tan x) (t)/(1+ t...

The value of `int_(1//e)^(tan x) (t)/(1+ t^(2)) dt+ int_(1//e)^(cot x) (1)/(t(1+ t^(2)))dt` is

A

`-1`

B

1

C

0

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the integral: \[ I = \int_{\frac{1}{e}}^{\tan x} \frac{t}{1 + t^2} \, dt + \int_{\frac{1}{e}}^{\cot x} \frac{1}{t(1 + t^2)} \, dt \] Let's denote the two integrals as \( I_1 \) and \( I_2 \): 1. **Evaluate \( I_1 \)**: \[ I_1 = \int_{\frac{1}{e}}^{\tan x} \frac{t}{1 + t^2} \, dt \] To solve this integral, we can use the substitution \( \theta = \tan^{-1}(t) \). Then, we have: \[ d\theta = \frac{1}{1 + t^2} dt \quad \Rightarrow \quad dt = (1 + t^2) d\theta \] Thus, we can rewrite the integral as: \[ I_1 = \int_{\tan^{-1}(\frac{1}{e})}^{\tan^{-1}(\tan x)} t \, d\theta \] Since \( t = \tan \theta \), we have: \[ I_1 = \int_{\tan^{-1}(\frac{1}{e})}^{x} \tan \theta \, d\theta \] The integral of \( \tan \theta \) is: \[ \int \tan \theta \, d\theta = -\log(\cos \theta) \] Therefore, we can evaluate: \[ I_1 = -\log(\cos x) + \log(\cos(\tan^{-1}(\frac{1}{e}))) \] We know that \( \cos(\tan^{-1}(t)) = \frac{1}{\sqrt{1 + t^2}} \), so: \[ \cos(\tan^{-1}(\frac{1}{e})) = \frac{1}{\sqrt{1 + \frac{1}{e^2}}} = \frac{e}{\sqrt{e^2 + 1}} \] Thus: \[ I_1 = -\log(\cos x) + \log\left(\frac{e}{\sqrt{e^2 + 1}}\right) \] 2. **Evaluate \( I_2 \)**: \[ I_2 = \int_{\frac{1}{e}}^{\cot x} \frac{1}{t(1 + t^2)} \, dt \] We can use partial fractions to simplify: \[ \frac{1}{t(1 + t^2)} = \frac{A}{t} + \frac{Bt + C}{1 + t^2} \] Solving for \( A, B, C \) gives \( A = 1 \), \( B = -1 \), and \( C = 0 \). Thus: \[ I_2 = \int_{\frac{1}{e}}^{\cot x} \left(\frac{1}{t} - \frac{t}{1 + t^2}\right) dt \] This can be separated into two integrals: \[ I_2 = \int_{\frac{1}{e}}^{\cot x} \frac{1}{t} dt - \int_{\frac{1}{e}}^{\cot x} \frac{t}{1 + t^2} dt \] The first integral evaluates to: \[ \log(\cot x) - \log\left(\frac{1}{e}\right) = \log(\cot x) + 1 \] The second integral is the same as \( I_1 \) but with different limits, giving: \[ I_2 = \log(\cot x) + 1 - I_1 \] 3. **Combine \( I_1 \) and \( I_2 \)**: \[ I = I_1 + I_2 = I_1 + \left(\log(\cot x) + 1 - I_1\right) \] Thus: \[ I = \log(\cot x) + 1 \] Finally, we conclude that the value of the integral is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) (Multiple Choice Questions)|47 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

The value of int_(1//e)^(tanx)(t)/(1+t^(2))dt+int_(1//e)^(cotx)(1)/(t(1+t^(2)))dt , where x in (pi//6, pi//3 ), is equal to :

For all values of , int_(1//e)^(tanx) (t)/(1+t^(2))dt+int_(1//e)^(tanx) (dt)/(t(t+t^(2))) has the value

[int_(1/e)^( tan x)(tdt)/(1+t^(2))+int_(1/e)^( cot x)(dt)/(t(1+t^(2)))" is "],[" equal to "]

the value of int_((1)/(e)rarr tan x)(tdt)/(1+t^(2))+int_((1)/(e)rarr cot x)(dt)/(t*(1+t^(2)))=

The value of int_((1)/(epsilon))^(tan x)(tdt)/(1+t^(2))+int_((1)/(epsilon))^(cot x)(dt)/(t(1+t^(2))), where x in((pi)/(6),(pi)/(3)), is equal to: (a)0(b) 2 (c) 1 (d) none of these

If A = int_(1)^(sintheta) (t)/(1 + r^(2)) dt and B = int_(1)^("cosec"theta) (1)/(t(1 +t^(2))) dt , then the value of the determinant |(A,A^(2),B),(e^(A +B),B^(2),-1),(1,A^(2) + B^(2) ,-1)| is

The value of int_(e^(-1))^(e) (dt)/(t(t+1)) is equal to

The value of (int_(0)^(1)(dt)/(sqrt(1-t^(4))))/(int_(0)^(1)(1)/(sqrt(1+t^(4)))dt) is

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (1) (Multiple Choice Questions)
  1. If int(-2)^(3) f (x) dx= 5 and int(1)^(3) [2-f(x)] dx=6, then int(-2)^...

    Text Solution

    |

  2. If int(-1)^(4) f(x) dx= 4 and int(2)^(4) [3-f(x)] dx= 7, then the valu...

    Text Solution

    |

  3. The value of the integral Sigma(r=1)^(n) int(0)^(1) f(r-1 +x) dx is

    Text Solution

    |

  4. The value of int(0)^(100) e^(x- [x])dx is

    Text Solution

    |

  5. If f(x) is a function satisfying f((1)/(x)) + x^(2) f(x) =0 for all no...

    Text Solution

    |

  6. If 2f(x) + 3f((1)/(x))= (1)/(x)-2, x ne 0 then int(1)^(2) f(x)dx=

    Text Solution

    |

  7. The value of the integral int(0)^(oo) (x log x)/((1+x^(2))^(2)) dx is

    Text Solution

    |

  8. int(0)^(1) "tan"^(-1) (2x-1)/({1+x-x^(2)})dx=

    Text Solution

    |

  9. The value of int(1//e)^(tan x) (t)/(1+ t^(2)) dt+ int(1//e)^(cot x) (1...

    Text Solution

    |

  10. int(0)^(pi) sin^(5) ((x)/(2))dx equals

    Text Solution

    |

  11. If int(0)^(pi//2) cos^(m) x sin^(m) x dx= lamda int(0)^(pi//2) sin^(m)...

    Text Solution

    |

  12. The value of int(1)^(e^(37)) (pi sin (pi ln x))/(x) dx is

    Text Solution

    |

  13. If int(-2)^(5) f(x) dx= 7.5^(3)- 7(-2)^(3) then f(x) is equal to

    Text Solution

    |

  14. Let (d)/(dx) F (x) = (e^(sin x))/(x), x gt 0. If int(1)^(4) (2xe^(sin ...

    Text Solution

    |

  15. Let (d)/(dx)F (x)= (e^(sin x))/(x), x gt 0. If int(1)^(4) (3x^2)/(x^3)...

    Text Solution

    |

  16. (1)/(c ) int(a c)^(bc) f((x)/(c ))dx=

    Text Solution

    |

  17. If A= int(0)^(1) (dx)/(sqrt(1+x^(4))) and B= (pi)/(4) then

    Text Solution

    |

  18. If g(x)=int(0)^(x)cos^(4) t dt , then g(x+pi) equals

    Text Solution

    |

  19. int(-a)^(a) f (x) dx is equal to

    Text Solution

    |

  20. int(1//2)^(2) |log(10) x| dx=

    Text Solution

    |