Home
Class 12
MATHS
int(0)^(pi) sin^(5) ((x)/(2))dx equals...

`int_(0)^(pi) sin^(5) ((x)/(2))dx` equals

A

`(16)/(15`

B

`(32)/(15)`

C

`(8)/(15)`

D

`(5)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} \sin^5\left(\frac{x}{2}\right)dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral: \[ I = \int_{0}^{\pi} \sin^5\left(\frac{x}{2}\right)dx = \int_{0}^{\pi} \sin^4\left(\frac{x}{2}\right) \sin\left(\frac{x}{2}\right)dx \] ### Step 2: Use the Identity for Sine Squared Next, we use the identity \( \sin^2\theta = 1 - \cos^2\theta \): \[ \sin^4\left(\frac{x}{2}\right) = \left(\sin^2\left(\frac{x}{2}\right)\right)^2 = \left(1 - \cos^2\left(\frac{x}{2}\right)\right)^2 \] This gives us: \[ I = \int_{0}^{\pi} \left(1 - \cos^2\left(\frac{x}{2}\right)\right)^2 \sin\left(\frac{x}{2}\right)dx \] ### Step 3: Substitute for Cosine Let \( t = \cos\left(\frac{x}{2}\right) \). Then, we differentiate: \[ dt = -\frac{1}{2}\sin\left(\frac{x}{2}\right)dx \implies dx = -2\frac{dt}{\sin\left(\frac{x}{2}\right)} \] The limits change as follows: - When \( x = 0 \), \( t = \cos(0) = 1 \) - When \( x = \pi \), \( t = \cos\left(\frac{\pi}{2}\right) = 0 \) Thus, we can rewrite the integral: \[ I = \int_{1}^{0} \left(1 - t^2\right)^2 (-2)dt = 2 \int_{0}^{1} \left(1 - t^2\right)^2 dt \] ### Step 4: Expand the Integrand Now we expand \( (1 - t^2)^2 \): \[ (1 - t^2)^2 = 1 - 2t^2 + t^4 \] So, the integral becomes: \[ I = 2 \int_{0}^{1} \left(1 - 2t^2 + t^4\right) dt \] ### Step 5: Integrate Term by Term Now we integrate term by term: \[ I = 2 \left( \int_{0}^{1} 1 dt - 2 \int_{0}^{1} t^2 dt + \int_{0}^{1} t^4 dt \right) \] Calculating each integral: - \( \int_{0}^{1} 1 dt = 1 \) - \( \int_{0}^{1} t^2 dt = \frac{t^3}{3} \Big|_{0}^{1} = \frac{1}{3} \) - \( \int_{0}^{1} t^4 dt = \frac{t^5}{5} \Big|_{0}^{1} = \frac{1}{5} \) Putting it all together: \[ I = 2 \left( 1 - 2 \cdot \frac{1}{3} + \frac{1}{5} \right) \] ### Step 6: Simplify the Expression Now simplify the expression inside the parentheses: \[ 1 - \frac{2}{3} + \frac{1}{5} = \frac{15}{15} - \frac{10}{15} + \frac{3}{15} = \frac{8}{15} \] Thus, \[ I = 2 \cdot \frac{8}{15} = \frac{16}{15} \] ### Final Answer The value of the integral is: \[ \boxed{\frac{16}{15}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) (Multiple Choice Questions)|47 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2pi) sin^(5) (x/4) dx is equal to

int_(0)^(pi//2)sin^(5)x dx=

Let m be any integer. Then, the integral int_(0)^(pi) (sin 2m x)/(sin x)dx equals

int_(0)^(1)log sin((pi)/(2)x)dx equals

int_(0)^(pi) [2sin x]dx=

int_0^(2pi) sin^5 (x/4) dx is equal to

int_(0)^(pi) x sin^(4) x dx is equal to

int_(0)^( pi)sin(2*x)dx

Prove that the integral int_(0)^(pi) (sin 2 k x)/(sin x) dx equals zero if k an integer.

For any n in N, int_(0)^(pi) (sin^(2)nx)/(sin^(2)x)dx is equal to

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (1) (Multiple Choice Questions)
  1. If int(-2)^(3) f (x) dx= 5 and int(1)^(3) [2-f(x)] dx=6, then int(-2)^...

    Text Solution

    |

  2. If int(-1)^(4) f(x) dx= 4 and int(2)^(4) [3-f(x)] dx= 7, then the valu...

    Text Solution

    |

  3. The value of the integral Sigma(r=1)^(n) int(0)^(1) f(r-1 +x) dx is

    Text Solution

    |

  4. The value of int(0)^(100) e^(x- [x])dx is

    Text Solution

    |

  5. If f(x) is a function satisfying f((1)/(x)) + x^(2) f(x) =0 for all no...

    Text Solution

    |

  6. If 2f(x) + 3f((1)/(x))= (1)/(x)-2, x ne 0 then int(1)^(2) f(x)dx=

    Text Solution

    |

  7. The value of the integral int(0)^(oo) (x log x)/((1+x^(2))^(2)) dx is

    Text Solution

    |

  8. int(0)^(1) "tan"^(-1) (2x-1)/({1+x-x^(2)})dx=

    Text Solution

    |

  9. The value of int(1//e)^(tan x) (t)/(1+ t^(2)) dt+ int(1//e)^(cot x) (1...

    Text Solution

    |

  10. int(0)^(pi) sin^(5) ((x)/(2))dx equals

    Text Solution

    |

  11. If int(0)^(pi//2) cos^(m) x sin^(m) x dx= lamda int(0)^(pi//2) sin^(m)...

    Text Solution

    |

  12. The value of int(1)^(e^(37)) (pi sin (pi ln x))/(x) dx is

    Text Solution

    |

  13. If int(-2)^(5) f(x) dx= 7.5^(3)- 7(-2)^(3) then f(x) is equal to

    Text Solution

    |

  14. Let (d)/(dx) F (x) = (e^(sin x))/(x), x gt 0. If int(1)^(4) (2xe^(sin ...

    Text Solution

    |

  15. Let (d)/(dx)F (x)= (e^(sin x))/(x), x gt 0. If int(1)^(4) (3x^2)/(x^3)...

    Text Solution

    |

  16. (1)/(c ) int(a c)^(bc) f((x)/(c ))dx=

    Text Solution

    |

  17. If A= int(0)^(1) (dx)/(sqrt(1+x^(4))) and B= (pi)/(4) then

    Text Solution

    |

  18. If g(x)=int(0)^(x)cos^(4) t dt , then g(x+pi) equals

    Text Solution

    |

  19. int(-a)^(a) f (x) dx is equal to

    Text Solution

    |

  20. int(1//2)^(2) |log(10) x| dx=

    Text Solution

    |