Home
Class 12
MATHS
If int(0)^(pi//2) cos^(m) x sin^(m) x dx...

If `int_(0)^(pi//2) cos^(m) x sin^(m) x dx= lamda int_(0)^(pi//2) sin^(m) xdx`, then `lamda`=

A

`2^(m)`

B

`2^(-m)`

C

`sqrt(2^(m))`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given integral equation \[ \int_{0}^{\frac{\pi}{2}} \cos^m x \sin^m x \, dx = \lambda \int_{0}^{\frac{\pi}{2}} \sin^m x \, dx, \] we will find the value of \(\lambda\). ### Step 1: Rewrite the left-hand side We start with the left-hand side: \[ \int_{0}^{\frac{\pi}{2}} \cos^m x \sin^m x \, dx. \] We can use the identity \(2 \cos x \sin x = \sin(2x)\) to rewrite the integral: \[ \int_{0}^{\frac{\pi}{2}} \cos^m x \sin^m x \, dx = \frac{1}{2^m} \int_{0}^{\frac{\pi}{2}} \sin(2x)^m \, dx. \] ### Step 2: Change of variable Now, we will perform a change of variable. Let \(t = 2x\), then \(dt = 2dx\) or \(dx = \frac{dt}{2}\). The limits change as follows: when \(x = 0\), \(t = 0\) and when \(x = \frac{\pi}{2}\), \(t = \pi\). Thus, we have: \[ \int_{0}^{\frac{\pi}{2}} \cos^m x \sin^m x \, dx = \frac{1}{2^m} \cdot \frac{1}{2} \int_{0}^{\pi} \sin^m t \, dt = \frac{1}{2^{m+1}} \int_{0}^{\pi} \sin^m t \, dt. \] ### Step 3: Use symmetry of the sine function Using the property of the sine function, we know: \[ \int_{0}^{\pi} \sin^m t \, dt = 2 \int_{0}^{\frac{\pi}{2}} \sin^m t \, dt. \] So we can write: \[ \int_{0}^{\frac{\pi}{2}} \cos^m x \sin^m x \, dx = \frac{1}{2^{m+1}} \cdot 2 \int_{0}^{\frac{\pi}{2}} \sin^m t \, dt = \frac{1}{2^m} \int_{0}^{\frac{\pi}{2}} \sin^m t \, dt. \] ### Step 4: Set the equation Now we can substitute this back into our original equation: \[ \frac{1}{2^m} \int_{0}^{\frac{\pi}{2}} \sin^m t \, dt = \lambda \int_{0}^{\frac{\pi}{2}} \sin^m t \, dt. \] ### Step 5: Solve for \(\lambda\) Assuming \(\int_{0}^{\frac{\pi}{2}} \sin^m t \, dt \neq 0\), we can divide both sides by \(\int_{0}^{\frac{\pi}{2}} \sin^m t \, dt\): \[ \frac{1}{2^m} = \lambda. \] Thus, we find: \[ \lambda = \frac{1}{2^m}. \] ### Final Answer So, the value of \(\lambda\) is: \[ \lambda = \frac{1}{2^m}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) (Multiple Choice Questions)|47 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

"int_(0)^( pi)x sin^(2)xdx

int_(0)^( pi/2)sin^(2)x cos xdx

int_ (0) ^ (pi / 2) x sin xdx

int_(0)^( pi/2)sin^(3)x cos xdx=

int_(0)^( pi/2)sin x cos xdx

int_(0)^( pi/2)sin^(2)x cos x dx

int_(0)^( pi/2)sin x*cos^(3)xdx

int_(0)^( pi/2)x sin x cos xdx

int_(0)^( pi/2)sin^(3)x cos xdx=?

int_(0)^( pi/2)sin^(3)x cos xdx=?

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (1) (Multiple Choice Questions)
  1. If int(-2)^(3) f (x) dx= 5 and int(1)^(3) [2-f(x)] dx=6, then int(-2)^...

    Text Solution

    |

  2. If int(-1)^(4) f(x) dx= 4 and int(2)^(4) [3-f(x)] dx= 7, then the valu...

    Text Solution

    |

  3. The value of the integral Sigma(r=1)^(n) int(0)^(1) f(r-1 +x) dx is

    Text Solution

    |

  4. The value of int(0)^(100) e^(x- [x])dx is

    Text Solution

    |

  5. If f(x) is a function satisfying f((1)/(x)) + x^(2) f(x) =0 for all no...

    Text Solution

    |

  6. If 2f(x) + 3f((1)/(x))= (1)/(x)-2, x ne 0 then int(1)^(2) f(x)dx=

    Text Solution

    |

  7. The value of the integral int(0)^(oo) (x log x)/((1+x^(2))^(2)) dx is

    Text Solution

    |

  8. int(0)^(1) "tan"^(-1) (2x-1)/({1+x-x^(2)})dx=

    Text Solution

    |

  9. The value of int(1//e)^(tan x) (t)/(1+ t^(2)) dt+ int(1//e)^(cot x) (1...

    Text Solution

    |

  10. int(0)^(pi) sin^(5) ((x)/(2))dx equals

    Text Solution

    |

  11. If int(0)^(pi//2) cos^(m) x sin^(m) x dx= lamda int(0)^(pi//2) sin^(m)...

    Text Solution

    |

  12. The value of int(1)^(e^(37)) (pi sin (pi ln x))/(x) dx is

    Text Solution

    |

  13. If int(-2)^(5) f(x) dx= 7.5^(3)- 7(-2)^(3) then f(x) is equal to

    Text Solution

    |

  14. Let (d)/(dx) F (x) = (e^(sin x))/(x), x gt 0. If int(1)^(4) (2xe^(sin ...

    Text Solution

    |

  15. Let (d)/(dx)F (x)= (e^(sin x))/(x), x gt 0. If int(1)^(4) (3x^2)/(x^3)...

    Text Solution

    |

  16. (1)/(c ) int(a c)^(bc) f((x)/(c ))dx=

    Text Solution

    |

  17. If A= int(0)^(1) (dx)/(sqrt(1+x^(4))) and B= (pi)/(4) then

    Text Solution

    |

  18. If g(x)=int(0)^(x)cos^(4) t dt , then g(x+pi) equals

    Text Solution

    |

  19. int(-a)^(a) f (x) dx is equal to

    Text Solution

    |

  20. int(1//2)^(2) |log(10) x| dx=

    Text Solution

    |