Home
Class 12
MATHS
If int(-2)^(5) f(x) dx= 7.5^(3)- 7(-2)^(...

If `int_(-2)^(5) f(x) dx= 7.5^(3)- 7(-2)^(3)` then f(x) is equal to

A

`21x^(2)`

B

`3x^(2)`

C

`(3)/(2) x^(4)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the function \( f(x) \) such that \[ \int_{-2}^{5} f(x) \, dx = 7 \cdot 5^3 - 7 \cdot (-2)^3. \] ### Step 1: Calculate the right-hand side First, we will compute the right-hand side of the equation: \[ 7 \cdot 5^3 - 7 \cdot (-2)^3. \] Calculating \( 5^3 \) and \( (-2)^3 \): \[ 5^3 = 125, \] \[ (-2)^3 = -8. \] Now substituting these values back into the equation: \[ 7 \cdot 125 - 7 \cdot (-8) = 7 \cdot 125 + 7 \cdot 8. \] Calculating \( 7 \cdot 125 \) and \( 7 \cdot 8 \): \[ 7 \cdot 125 = 875, \] \[ 7 \cdot 8 = 56. \] Now add these two results: \[ 875 + 56 = 931. \] So, we have: \[ \int_{-2}^{5} f(x) \, dx = 931. \] ### Step 2: Determine the form of \( f(x) \) Since the integral is from \(-2\) to \(5\) and the right-hand side involves \(x^3\) terms, we can deduce that \( f(x) \) should be a polynomial of degree 2 (since integrating a polynomial of degree 2 gives a polynomial of degree 3). Let’s assume: \[ f(x) = ax^2. \] ### Step 3: Compute the integral Now, we compute the integral: \[ \int_{-2}^{5} ax^2 \, dx. \] Using the formula for the integral of \( x^n \): \[ \int x^n \, dx = \frac{x^{n+1}}{n+1}, \] we have: \[ \int ax^2 \, dx = a \cdot \frac{x^3}{3}. \] Now, we evaluate this from \(-2\) to \(5\): \[ \int_{-2}^{5} ax^2 \, dx = a \left[ \frac{5^3}{3} - \frac{(-2)^3}{3} \right]. \] Calculating \( \frac{5^3}{3} \) and \( \frac{(-2)^3}{3} \): \[ \frac{5^3}{3} = \frac{125}{3}, \] \[ \frac{(-2)^3}{3} = \frac{-8}{3}. \] Now substituting these values back: \[ \int_{-2}^{5} ax^2 \, dx = a \left[ \frac{125}{3} - \frac{-8}{3} \right] = a \left[ \frac{125 + 8}{3} \right] = a \left[ \frac{133}{3} \right]. \] ### Step 4: Set the integral equal to 931 Now we set the integral equal to 931: \[ a \cdot \frac{133}{3} = 931. \] To solve for \( a \): \[ a = 931 \cdot \frac{3}{133}. \] Calculating \( a \): \[ a = \frac{2793}{133} = 21. \] ### Conclusion Thus, the function \( f(x) \) is: \[ f(x) = 21x^2. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) (Multiple Choice Questions)|47 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

A continous function f(x) is such that f(3x)=2f(x), AA x in R . If int_(0)^(1)f(x)dx=1, then int_(1)^(3)f(x)dx is equal to

If f(x) is differentiable and int_(0)^(t^2)xf(x)dx=(2)/(5)t^5 ,then 5 f((4)/(25)) is equal to ....

If f(x)=x^(3)-2x^(2)+7x+5 ,then f(x-2)=

If f(x) = x^(2) - 5x + 7 , then f(2) - f(-1) is equal to .

If f((3x-4)/(3x+4))=x+2 , then int f(x)dx is equal to

int(1-7cos^(2)x)/(sin^(7)xcos^(2)x)dx=(f(x))/((sinx)^(7))+C , then f(x) is equal to

If f(2-x)=f(2+x) and f(4-x)=f(4+x) for all x and f(x) is a function for which int_(0)^(2)f(x)dx=5, then int_(0)^(50)f(x)dx is equal to 125 (b) int_(-4)^(46)f(x)dx int_(1)^(51)f(x)dx(d)int_(2)^(52)f(x)dx

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (1) (Multiple Choice Questions)
  1. If int(-2)^(3) f (x) dx= 5 and int(1)^(3) [2-f(x)] dx=6, then int(-2)^...

    Text Solution

    |

  2. If int(-1)^(4) f(x) dx= 4 and int(2)^(4) [3-f(x)] dx= 7, then the valu...

    Text Solution

    |

  3. The value of the integral Sigma(r=1)^(n) int(0)^(1) f(r-1 +x) dx is

    Text Solution

    |

  4. The value of int(0)^(100) e^(x- [x])dx is

    Text Solution

    |

  5. If f(x) is a function satisfying f((1)/(x)) + x^(2) f(x) =0 for all no...

    Text Solution

    |

  6. If 2f(x) + 3f((1)/(x))= (1)/(x)-2, x ne 0 then int(1)^(2) f(x)dx=

    Text Solution

    |

  7. The value of the integral int(0)^(oo) (x log x)/((1+x^(2))^(2)) dx is

    Text Solution

    |

  8. int(0)^(1) "tan"^(-1) (2x-1)/({1+x-x^(2)})dx=

    Text Solution

    |

  9. The value of int(1//e)^(tan x) (t)/(1+ t^(2)) dt+ int(1//e)^(cot x) (1...

    Text Solution

    |

  10. int(0)^(pi) sin^(5) ((x)/(2))dx equals

    Text Solution

    |

  11. If int(0)^(pi//2) cos^(m) x sin^(m) x dx= lamda int(0)^(pi//2) sin^(m)...

    Text Solution

    |

  12. The value of int(1)^(e^(37)) (pi sin (pi ln x))/(x) dx is

    Text Solution

    |

  13. If int(-2)^(5) f(x) dx= 7.5^(3)- 7(-2)^(3) then f(x) is equal to

    Text Solution

    |

  14. Let (d)/(dx) F (x) = (e^(sin x))/(x), x gt 0. If int(1)^(4) (2xe^(sin ...

    Text Solution

    |

  15. Let (d)/(dx)F (x)= (e^(sin x))/(x), x gt 0. If int(1)^(4) (3x^2)/(x^3)...

    Text Solution

    |

  16. (1)/(c ) int(a c)^(bc) f((x)/(c ))dx=

    Text Solution

    |

  17. If A= int(0)^(1) (dx)/(sqrt(1+x^(4))) and B= (pi)/(4) then

    Text Solution

    |

  18. If g(x)=int(0)^(x)cos^(4) t dt , then g(x+pi) equals

    Text Solution

    |

  19. int(-a)^(a) f (x) dx is equal to

    Text Solution

    |

  20. int(1//2)^(2) |log(10) x| dx=

    Text Solution

    |