Home
Class 12
MATHS
int(-a)^(a) f (x) dx is equal to...

`int_(-a)^(a) f (x) dx` is equal to

A

`int_(0)^(a) [f(x) + f(-x)]dx`

B

`int_(0)^(a) [f(x)- f(-x)] dx`

C

`2int_(0)^(a) f(x) dx`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-a}^{a} f(x) \, dx \), we will break it down step by step. ### Step 1: Break the Integral We start by splitting the integral into two parts: \[ \int_{-a}^{a} f(x) \, dx = \int_{-a}^{0} f(x) \, dx + \int_{0}^{a} f(x) \, dx \] ### Step 2: Change of Variable for the First Integral For the first integral \( I_1 = \int_{-a}^{0} f(x) \, dx \), we will use the substitution \( x = -t \). Then, we have: - When \( x = -a \), \( t = a \) - When \( x = 0 \), \( t = 0 \) - The differential changes as \( dx = -dt \) Thus, we can rewrite \( I_1 \): \[ I_1 = \int_{-a}^{0} f(x) \, dx = \int_{a}^{0} f(-t)(-dt) = \int_{0}^{a} f(-t) \, dt \] ### Step 3: Combine the Integrals Now we can express the original integral as: \[ \int_{-a}^{a} f(x) \, dx = \int_{0}^{a} f(-t) \, dt + \int_{0}^{a} f(x) \, dx \] Since we are changing the variable \( t \) back to \( x \) in the second integral, we have: \[ \int_{-a}^{a} f(x) \, dx = \int_{0}^{a} f(-x) \, dx + \int_{0}^{a} f(x) \, dx \] ### Step 4: Final Expression Combining both integrals gives us: \[ \int_{-a}^{a} f(x) \, dx = \int_{0}^{a} (f(x) + f(-x)) \, dx \] ### Conclusion Thus, the final result for the integral \( \int_{-a}^{a} f(x) \, dx \) is: \[ \int_{-a}^{a} f(x) \, dx = \int_{0}^{a} (f(x) + f(-x)) \, dx \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) (Multiple Choice Questions)|47 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = {x} , the fractional part of x then int_(-1)^(1) f(x) dx is equal to

If f(x) in inegrable over [1,2] then int_(1)^(2) f(x) dx is equal to :

If f(x) = f(a+x) and int_(0)^(a) f(x) dx = k, "then" int _(0)^(na) f(x) dx is equal to

If f(a+b - x) = f(x) , then int_(a)^(b) x f(x) dx is equal to

Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f(x)"for all" x in [ 0,a] . If int_(0)^(a//2) f(x) dx=alpha, then int _(0)^(a) f(x) dx is equal to

int_(2-a)^(2+a)f(x)dx is equal to (where f(2-a)=f(2+a)AA a in R)

If 2f(x) - 3 f(1//x) = x," then " int_(1)^(2) f(x) dx is equal to

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (1) (Multiple Choice Questions)
  1. If int(-2)^(3) f (x) dx= 5 and int(1)^(3) [2-f(x)] dx=6, then int(-2)^...

    Text Solution

    |

  2. If int(-1)^(4) f(x) dx= 4 and int(2)^(4) [3-f(x)] dx= 7, then the valu...

    Text Solution

    |

  3. The value of the integral Sigma(r=1)^(n) int(0)^(1) f(r-1 +x) dx is

    Text Solution

    |

  4. The value of int(0)^(100) e^(x- [x])dx is

    Text Solution

    |

  5. If f(x) is a function satisfying f((1)/(x)) + x^(2) f(x) =0 for all no...

    Text Solution

    |

  6. If 2f(x) + 3f((1)/(x))= (1)/(x)-2, x ne 0 then int(1)^(2) f(x)dx=

    Text Solution

    |

  7. The value of the integral int(0)^(oo) (x log x)/((1+x^(2))^(2)) dx is

    Text Solution

    |

  8. int(0)^(1) "tan"^(-1) (2x-1)/({1+x-x^(2)})dx=

    Text Solution

    |

  9. The value of int(1//e)^(tan x) (t)/(1+ t^(2)) dt+ int(1//e)^(cot x) (1...

    Text Solution

    |

  10. int(0)^(pi) sin^(5) ((x)/(2))dx equals

    Text Solution

    |

  11. If int(0)^(pi//2) cos^(m) x sin^(m) x dx= lamda int(0)^(pi//2) sin^(m)...

    Text Solution

    |

  12. The value of int(1)^(e^(37)) (pi sin (pi ln x))/(x) dx is

    Text Solution

    |

  13. If int(-2)^(5) f(x) dx= 7.5^(3)- 7(-2)^(3) then f(x) is equal to

    Text Solution

    |

  14. Let (d)/(dx) F (x) = (e^(sin x))/(x), x gt 0. If int(1)^(4) (2xe^(sin ...

    Text Solution

    |

  15. Let (d)/(dx)F (x)= (e^(sin x))/(x), x gt 0. If int(1)^(4) (3x^2)/(x^3)...

    Text Solution

    |

  16. (1)/(c ) int(a c)^(bc) f((x)/(c ))dx=

    Text Solution

    |

  17. If A= int(0)^(1) (dx)/(sqrt(1+x^(4))) and B= (pi)/(4) then

    Text Solution

    |

  18. If g(x)=int(0)^(x)cos^(4) t dt , then g(x+pi) equals

    Text Solution

    |

  19. int(-a)^(a) f (x) dx is equal to

    Text Solution

    |

  20. int(1//2)^(2) |log(10) x| dx=

    Text Solution

    |