Home
Class 12
MATHS
int(1//2)^(2) |log(10) x| dx=...

`int_(1//2)^(2) |log_(10) x| dx`=

A

`log_(10) (8//e)`

B

`(1)/(2) log_(10) (8//e)`

C

`log_(10) (2//e)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{\frac{1}{2}}^{2} |\log_{10} x| \, dx \), we need to consider the behavior of the function \( \log_{10} x \) over the interval \([\frac{1}{2}, 2]\). ### Step 1: Analyze the Function The logarithmic function \( \log_{10} x \) is negative for \( x \) in the interval \(\left(0, 1\right)\) and positive for \( x \) in the interval \(\left(1, \infty\right)\). Therefore, we can break the integral into two parts: - From \(\frac{1}{2}\) to \(1\), \( \log_{10} x < 0 \) so \( |\log_{10} x| = -\log_{10} x \). - From \(1\) to \(2\), \( \log_{10} x \geq 0 \) so \( |\log_{10} x| = \log_{10} x \). Thus, we can rewrite the integral as: \[ I = \int_{\frac{1}{2}}^{1} -\log_{10} x \, dx + \int_{1}^{2} \log_{10} x \, dx \] ### Step 2: Calculate Each Integral Now we will calculate each integral separately. #### Integral from \(\frac{1}{2}\) to \(1\): \[ I_1 = \int_{\frac{1}{2}}^{1} -\log_{10} x \, dx \] Using integration by parts, let: - \( u = -\log_{10} x \) ⇒ \( du = -\frac{1}{x \ln 10} \, dx \) - \( dv = dx \) ⇒ \( v = x \) Using integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ I_1 = \left[-x \log_{10} x\right]_{\frac{1}{2}}^{1} - \int_{\frac{1}{2}}^{1} x \left(-\frac{1}{x \ln 10}\right) \, dx \] \[ = \left[-1 \cdot \log_{10} 1 + \frac{1}{2} \log_{10} \frac{1}{2}\right] - \left[-\frac{1}{\ln 10} \int_{\frac{1}{2}}^{1} dx\right] \] \[ = \left[0 + \frac{1}{2} \log_{10} \frac{1}{2}\right] + \frac{1}{\ln 10} \left[1 - \frac{1}{2}\right] \] \[ = \frac{1}{2} \log_{10} \frac{1}{2} + \frac{1}{2 \ln 10} \] #### Integral from \(1\) to \(2\): \[ I_2 = \int_{1}^{2} \log_{10} x \, dx \] Using integration by parts again: - \( u = \log_{10} x \) ⇒ \( du = \frac{1}{x \ln 10} \, dx \) - \( dv = dx \) ⇒ \( v = x \) \[ I_2 = \left[x \log_{10} x\right]_{1}^{2} - \int_{1}^{2} x \left(\frac{1}{x \ln 10}\right) \, dx \] \[ = \left[2 \log_{10} 2 - 1 \cdot \log_{10} 1\right] - \frac{1}{\ln 10} \left[2 - 1\right] \] \[ = 2 \log_{10} 2 - 0 - \frac{1}{\ln 10} \] \[ = 2 \log_{10} 2 - \frac{1}{\ln 10} \] ### Step 3: Combine the Results Now we combine \( I_1 \) and \( I_2 \): \[ I = I_1 + I_2 \] \[ = \left(\frac{1}{2} \log_{10} \frac{1}{2} + \frac{1}{2 \ln 10}\right) + \left(2 \log_{10} 2 - \frac{1}{\ln 10}\right) \] \[ = \frac{1}{2} \log_{10} \frac{1}{2} + 2 \log_{10} 2 - \frac{1}{2 \ln 10} \] ### Step 4: Simplify Further Using the property of logarithms, \( \log_{10} \frac{1}{2} = -\log_{10} 2 \): \[ = \frac{1}{2} (-\log_{10} 2) + 2 \log_{10} 2 - \frac{1}{2 \ln 10} \] \[ = \left(-\frac{1}{2} + 2\right) \log_{10} 2 - \frac{1}{2 \ln 10} \] \[ = \frac{3}{2} \log_{10} 2 - \frac{1}{2 \ln 10} \] ### Final Answer Thus, the final result for the integral is: \[ I = \frac{3}{2} \log_{10} 2 - \frac{1}{2 \ln 10} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (1) True and false|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) (Multiple Choice Questions)|47 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(1//2)^(2) |log_(10)x|dx equals to

int_(1)^(2) (log_(e) x)/(x^(2)) dx

int_(1)^(2)x log x dx =

int_(0)^(1)x log (1+2 x)dx

int_(1)^(2)(log x)/(x)dx=

The value of ({int_(-1//2)^(1//2) cos2x.log((1+x)/(1-x))dx})/({int_(0)^(1//2)cos2x.log((1+x)/(1-x))dx}) is

int_(1)^(3)|(2-x)log_(e )x|dx is equal to:

Evaluate int_(0)^(1/2)x log(1-x)dx

int_(2)^(3)log(x-1)/(x-1)dx

int(1)/(x cos^(2)(log_(e)x))dx

ML KHANNA-DEFINITE INTEGRAL-ProblemSet (1) (Multiple Choice Questions)
  1. If int(-2)^(3) f (x) dx= 5 and int(1)^(3) [2-f(x)] dx=6, then int(-2)^...

    Text Solution

    |

  2. If int(-1)^(4) f(x) dx= 4 and int(2)^(4) [3-f(x)] dx= 7, then the valu...

    Text Solution

    |

  3. The value of the integral Sigma(r=1)^(n) int(0)^(1) f(r-1 +x) dx is

    Text Solution

    |

  4. The value of int(0)^(100) e^(x- [x])dx is

    Text Solution

    |

  5. If f(x) is a function satisfying f((1)/(x)) + x^(2) f(x) =0 for all no...

    Text Solution

    |

  6. If 2f(x) + 3f((1)/(x))= (1)/(x)-2, x ne 0 then int(1)^(2) f(x)dx=

    Text Solution

    |

  7. The value of the integral int(0)^(oo) (x log x)/((1+x^(2))^(2)) dx is

    Text Solution

    |

  8. int(0)^(1) "tan"^(-1) (2x-1)/({1+x-x^(2)})dx=

    Text Solution

    |

  9. The value of int(1//e)^(tan x) (t)/(1+ t^(2)) dt+ int(1//e)^(cot x) (1...

    Text Solution

    |

  10. int(0)^(pi) sin^(5) ((x)/(2))dx equals

    Text Solution

    |

  11. If int(0)^(pi//2) cos^(m) x sin^(m) x dx= lamda int(0)^(pi//2) sin^(m)...

    Text Solution

    |

  12. The value of int(1)^(e^(37)) (pi sin (pi ln x))/(x) dx is

    Text Solution

    |

  13. If int(-2)^(5) f(x) dx= 7.5^(3)- 7(-2)^(3) then f(x) is equal to

    Text Solution

    |

  14. Let (d)/(dx) F (x) = (e^(sin x))/(x), x gt 0. If int(1)^(4) (2xe^(sin ...

    Text Solution

    |

  15. Let (d)/(dx)F (x)= (e^(sin x))/(x), x gt 0. If int(1)^(4) (3x^2)/(x^3)...

    Text Solution

    |

  16. (1)/(c ) int(a c)^(bc) f((x)/(c ))dx=

    Text Solution

    |

  17. If A= int(0)^(1) (dx)/(sqrt(1+x^(4))) and B= (pi)/(4) then

    Text Solution

    |

  18. If g(x)=int(0)^(x)cos^(4) t dt , then g(x+pi) equals

    Text Solution

    |

  19. int(-a)^(a) f (x) dx is equal to

    Text Solution

    |

  20. int(1//2)^(2) |log(10) x| dx=

    Text Solution

    |