Home
Class 12
MATHS
The integral int(-1//2)^(1//2) ([x] + ln...

The integral `int_(-1//2)^(1//2) ([x] + ln ((1+x)/(1-x)))dx` equals

A

`-(1)/(2)`

B

0

C

1

D

`2ln ((1)/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{1}{2}}^{\frac{1}{2}} \left( [x] + \ln \left( \frac{1+x}{1-x} \right) \right) dx, \] we can separate it into two parts: \[ I = I_1 + I_2, \] where \[ I_1 = \int_{-\frac{1}{2}}^{\frac{1}{2}} [x] \, dx \] and \[ I_2 = \int_{-\frac{1}{2}}^{\frac{1}{2}} \ln \left( \frac{1+x}{1-x} \right) \, dx. \] ### Step 1: Calculate \( I_2 \) To evaluate \( I_2 \), we can use the property of definite integrals: \[ \int_{-a}^{a} f(x) \, dx = 0 \quad \text{if } f(-x) = -f(x). \] Let \[ f(x) = \ln \left( \frac{1+x}{1-x} \right). \] Now, we compute \( f(-x) \): \[ f(-x) = \ln \left( \frac{1-x}{1+x} \right) = -\ln \left( \frac{1+x}{1-x} \right) = -f(x). \] Since \( f(-x) = -f(x) \), we have: \[ I_2 = \int_{-\frac{1}{2}}^{\frac{1}{2}} \ln \left( \frac{1+x}{1-x} \right) \, dx = 0. \] ### Step 2: Calculate \( I_1 \) Now we calculate \( I_1 \): \[ I_1 = \int_{-\frac{1}{2}}^{\frac{1}{2}} [x] \, dx. \] The greatest integer function \( [x] \) is defined as follows in the interval \([-1/2, 1/2]\): - For \( x \in \left[-\frac{1}{2}, 0\right) \), \( [x] = -1 \). - For \( x \in \left[0, \frac{1}{2}\right) \), \( [x] = 0 \). Thus, we can break \( I_1 \) into two parts: \[ I_1 = \int_{-\frac{1}{2}}^{0} -1 \, dx + \int_{0}^{\frac{1}{2}} 0 \, dx. \] Calculating each part: 1. For the first integral: \[ \int_{-\frac{1}{2}}^{0} -1 \, dx = -1 \cdot \left(0 - \left(-\frac{1}{2}\right)\right) = -1 \cdot \frac{1}{2} = -\frac{1}{2}. \] 2. For the second integral: \[ \int_{0}^{\frac{1}{2}} 0 \, dx = 0. \] Putting it all together: \[ I_1 = -\frac{1}{2} + 0 = -\frac{1}{2}. \] ### Final Calculation Now we combine \( I_1 \) and \( I_2 \): \[ I = I_1 + I_2 = -\frac{1}{2} + 0 = -\frac{1}{2}. \] Thus, the value of the integral is \[ \boxed{-\frac{1}{2}}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (3) True and False|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (3) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

The integral int_( -1//2)^(1//2) {[x]+ in ((1+x)/(1-x))} dx equals

The integral int_(-(1)/(2))^((1)/(2))([x]+log((1+x)/(1-x)))*dx equals

The value of the integral int_(-1//2)^(1//2) cos x log((1+x)/(1-x))dx , is

int_(-1//2) ^(1//2) (cos x ) log ((1-x)/(1+x)) dx =

Evaluate the following integrals: int_(-1/2)^(1/2) cos x log ((1+x)/(1-x))dx

int_(-1//2)^(1//2)(cosx)[log((1-x)/(1+x))]dx is equal to

The value of definite integral I=int_(-1/2)^(1/2)sin^(2)x log((1-x)/(1+x))dx is

The value of definite integral I=int_(-1/2)^(1/2)sin^(2)x log((1-x)/(1+x))dx is

ML KHANNA-DEFINITE INTEGRAL-Problem set (3) (Multiple Choice Questions)
  1. The value of int(-pi//2)^(pi//2) log {(2-sin theta)/(2+sin theta}d the...

    Text Solution

    |

  2. The integral int(-1//2)^(1//2) ([x] + ln ((1+x)/(1-x)))dx equals

    Text Solution

    |

  3. If int(-pi//3)^(pi//3) [(a)/(3) |tan x| + (b tan x)/(1+sec x)+ c] dx =...

    Text Solution

    |

  4. f: R rarr R, g: R rarr R are continuous functions. The value of integr...

    Text Solution

    |

  5. int(-1)^(1) (x sin^(-1)x)/(sqrt(1-x^(2))) dx=

    Text Solution

    |

  6. int(-1)^(1) (x^(2) sin^(-1) [x])/(sqrt""(1-x^(2)))dx=

    Text Solution

    |

  7. int(-pi//2)^(pi//2) sin (|x|)dx=

    Text Solution

    |

  8. int(-pi)^(pi) (x^(3) + x cos x+ tan^(5) x +2)=

    Text Solution

    |

  9. int(-pi)^(pi) (2x(1+ sinx))/(1+ cos^(2))dx is

    Text Solution

    |

  10. overset(-pi//2)underset(-3pi//2)int{(x+pi)^(3)+cos^(2)(x+3pi)}dx, is

    Text Solution

    |

  11. Evaluate: int0^pi(xsin2xsin(pi/2cosx))/(2x-pi)dx

    Text Solution

    |

  12. Evaluate the following definite integral: int(-sqrt(2))^(sqrt(2))(2...

    Text Solution

    |

  13. The value of int(-2)^(2) (ax^(3) + bx+ c) dx depends on which followin...

    Text Solution

    |

  14. If f(x)= ax^(2) +bx +c such that f(0)=2 f'(0)= -3, f''(0) =4, then int...

    Text Solution

    |

  15. int(-pi//2)^(pi//2) sin^(2) x cos^(2) x (sin x +cos x) dx=

    Text Solution

    |

  16. The value of the integral int(-1//2)^(1//2) cos x log ((1+x)/(1-x)) dx

    Text Solution

    |

  17. The integral value of int(-2)^(0) [x^(3)+3x^(2) +3x +3+ (x+1) cos (x+1...

    Text Solution

    |

  18. The value of the integral int(-pi//4)^(pi//4) (1)/(sin^(4) x) dx is

    Text Solution

    |

  19. The value of the integral overset(1//2)underset(-1//2)int {((x+1)/(...

    Text Solution

    |

  20. The value of the integral int(-1)^(1) log (x+ sqrt(x^(2)+1)) dx is

    Text Solution

    |