Home
Class 12
MATHS
If int(-pi//3)^(pi//3) [(a)/(3) |tan x| ...

If `int_(-pi//3)^(pi//3) [(a)/(3) |tan x| + (b tan x)/(1+sec x)+ c] dx = 0`, where a, b, c are constants, then c=

A

`-(a)/(pi) log 2`

B

`(2a)/(pi) log 2`

C

`a log 2`

D

`(a)/(pi) log 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given integral equation \[ \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \left( \frac{a}{3} |\tan x| + \frac{b \tan x}{1 + \sec x} + c \right) dx = 0, \] where \( a, b, c \) are constants, we will break the integral into three parts and analyze each part. ### Step 1: Break the integral into three parts We can express the integral as: \[ \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{a}{3} |\tan x| \, dx + \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{b \tan x}{1 + \sec x} \, dx + \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} c \, dx = 0. \] ### Step 2: Evaluate the first integral The first integral involves \( |\tan x| \). Since \( \tan x \) is an odd function, \( |\tan x| \) is an even function. Therefore, we can write: \[ \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} |\tan x| \, dx = 2 \int_{0}^{\frac{\pi}{3}} \tan x \, dx. \] Calculating the integral: \[ \int \tan x \, dx = -\log |\cos x| + C. \] Thus, \[ \int_{0}^{\frac{\pi}{3}} \tan x \, dx = -\log |\cos(\frac{\pi}{3})| + \log |\cos(0)| = -\log \left(\frac{1}{2}\right) + \log(1) = \log(2). \] So, \[ \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} |\tan x| \, dx = 2 \log(2). \] Therefore, \[ \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{a}{3} |\tan x| \, dx = \frac{2a}{3} \log(2). \] ### Step 3: Evaluate the second integral For the second integral, we have: \[ \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{b \tan x}{1 + \sec x} \, dx. \] Since \( \tan(-x) = -\tan(x) \) and \( \sec(-x) = \sec(x) \), the function \( \frac{\tan x}{1 + \sec x} \) is odd. Therefore, \[ \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{b \tan x}{1 + \sec x} \, dx = 0. \] ### Step 4: Evaluate the third integral The third integral is straightforward: \[ \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} c \, dx = c \left( \frac{\pi}{3} - \left(-\frac{\pi}{3}\right) \right) = c \cdot \frac{2\pi}{3}. \] ### Step 5: Combine all parts Now we combine all parts: \[ \frac{2a}{3} \log(2) + 0 + c \cdot \frac{2\pi}{3} = 0. \] ### Step 6: Solve for \( c \) Rearranging gives: \[ c \cdot \frac{2\pi}{3} = -\frac{2a}{3} \log(2). \] Dividing both sides by \( \frac{2\pi}{3} \): \[ c = -\frac{a}{\pi} \log(2). \] ### Final Answer Thus, the value of \( c \) is: \[ \boxed{-\frac{a}{\pi} \log(2)}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (3) True and False|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (3) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(pi//6)^(pi//3)(1)/(1+tan x) dx=

int_(pi//4)^(pi//3)(tan x + cot x) dx =

int_(-pi//4)^(pi//4)sec^(3)x tan^(3)x dx=

The equation int_(-(pi)/(4))^((pi)/(4)){a|sin x|+(b sin x)/(1+cos^(2)x)+c}dx=0 where a,b,c are constants gives a relation between

int_(0)^(pi//2)(1)/(1+tan^(3)x)dx=

The value of int_(-pi//2)^(pi//2)(x^(3) + x cos x + tan^(5)x + 1)dx is

int_(0)^((pi)/(3))[tan^(2)x]dx

int_(0)^(pi//4) (sec^(2)x)/((1+tan x)(2+tan x))dx is equal to

int_((pi)/(6))^((pi)/(3))(sqrt(tan x))/(sqrt(tan x)+sqrt(cot x))dx

ML KHANNA-DEFINITE INTEGRAL-Problem set (3) (Multiple Choice Questions)
  1. The value of int(-pi//2)^(pi//2) log {(2-sin theta)/(2+sin theta}d the...

    Text Solution

    |

  2. The integral int(-1//2)^(1//2) ([x] + ln ((1+x)/(1-x)))dx equals

    Text Solution

    |

  3. If int(-pi//3)^(pi//3) [(a)/(3) |tan x| + (b tan x)/(1+sec x)+ c] dx =...

    Text Solution

    |

  4. f: R rarr R, g: R rarr R are continuous functions. The value of integr...

    Text Solution

    |

  5. int(-1)^(1) (x sin^(-1)x)/(sqrt(1-x^(2))) dx=

    Text Solution

    |

  6. int(-1)^(1) (x^(2) sin^(-1) [x])/(sqrt""(1-x^(2)))dx=

    Text Solution

    |

  7. int(-pi//2)^(pi//2) sin (|x|)dx=

    Text Solution

    |

  8. int(-pi)^(pi) (x^(3) + x cos x+ tan^(5) x +2)=

    Text Solution

    |

  9. int(-pi)^(pi) (2x(1+ sinx))/(1+ cos^(2))dx is

    Text Solution

    |

  10. overset(-pi//2)underset(-3pi//2)int{(x+pi)^(3)+cos^(2)(x+3pi)}dx, is

    Text Solution

    |

  11. Evaluate: int0^pi(xsin2xsin(pi/2cosx))/(2x-pi)dx

    Text Solution

    |

  12. Evaluate the following definite integral: int(-sqrt(2))^(sqrt(2))(2...

    Text Solution

    |

  13. The value of int(-2)^(2) (ax^(3) + bx+ c) dx depends on which followin...

    Text Solution

    |

  14. If f(x)= ax^(2) +bx +c such that f(0)=2 f'(0)= -3, f''(0) =4, then int...

    Text Solution

    |

  15. int(-pi//2)^(pi//2) sin^(2) x cos^(2) x (sin x +cos x) dx=

    Text Solution

    |

  16. The value of the integral int(-1//2)^(1//2) cos x log ((1+x)/(1-x)) dx

    Text Solution

    |

  17. The integral value of int(-2)^(0) [x^(3)+3x^(2) +3x +3+ (x+1) cos (x+1...

    Text Solution

    |

  18. The value of the integral int(-pi//4)^(pi//4) (1)/(sin^(4) x) dx is

    Text Solution

    |

  19. The value of the integral overset(1//2)underset(-1//2)int {((x+1)/(...

    Text Solution

    |

  20. The value of the integral int(-1)^(1) log (x+ sqrt(x^(2)+1)) dx is

    Text Solution

    |