Home
Class 12
MATHS
f: R rarr R, g: R rarr R are continuous ...

`f: R rarr R, g: R rarr R` are continuous functions. The value of integral `int_(-pi//2)^(pi//2) [f(x) + f(-x)] [g(x) -g(-x)] dx` is

A

`pi`

B

1

C

`-1`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} [f(x) + f(-x)] [g(x) - g(-x)] \, dx \), we will use the properties of definite integrals and the symmetry of the functions involved. ### Step-by-Step Solution: 1. **Define the Integral:** \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} [f(x) + f(-x)] [g(x) - g(-x)] \, dx \] 2. **Use the Property of Definite Integrals:** We can use the property of definite integrals that states: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \] Here, \( a = -\frac{\pi}{2} \) and \( b = \frac{\pi}{2} \), so \( a + b = 0 \). 3. **Change of Variables:** Substitute \( x \) with \( -x \): \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} [f(-x) + f(x)] [g(-x) - g(x)] \, (-dx) \] This simplifies to: \[ I = -\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} [f(-x) + f(x)] [g(-x) - g(x)] \, dx \] 4. **Rearranging the Integral:** We can rewrite the integral: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} [f(x) + f(-x)] [g(x) - g(-x)] \, dx \] This gives us: \[ I = -I \] 5. **Solving for \( I \):** From the equation \( I = -I \), we can add \( I \) to both sides: \[ 2I = 0 \implies I = 0 \] ### Final Result: The value of the integral is: \[ I = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (3) True and False|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (3) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

Let f:R rarr R and g:R rarr R be continuous functions.Then the value of the integral int_((pi)/(2))^((pi)/(2))[f(x)+f(-x)][g(x)-g(-x)]dx is

Let f:R rarr and g:R rarr R be continuous function.Then the value of the integral int_(-(pi)/(2))^((pi)/(2))[f(x)+f(-x)][g(x)-g(-x)]dx is pi (b) 1(c)-1(d)0

If f:R rarr R and g:R rarr R are two given functions, then prove that 2min*{f(x)-g(x),0}=f(x)-g(x)-|g(x)-f(x)|

Let f:R rarr R and g:R rarr R be two functions such that fog(x)=sin x^(2) andgo f(x)=sin^(2)x Then,find f(x) and g(x)

Let f:R rarr R and g:R rarr R be two functions such that (gof)(x)=sin^(2)x and (fog)(x)=sin(x^(2)) Find f(x) and g(x)

f:R rarr R,f(x)=x^(3)+3x+2 and g:R rarr R such that f(g(x))=x. Then value of int_(2)^(6)g(x)dx is

Let f : R rarr R and g : R rarr R be two functions such that fog (x) = sin x^(2) and gof (x) = sin^(2)x . Then , find f(x) and g(x).

Let f:R rarr R be a continuous function given by f(x+y)=f(x)+f(y) for all x,y,in R if int_(0)^(2)f(x)dx=alpha, then int_(-2)^(2)f(x)dx is equal to

ML KHANNA-DEFINITE INTEGRAL-Problem set (3) (Multiple Choice Questions)
  1. The integral int(-1//2)^(1//2) ([x] + ln ((1+x)/(1-x)))dx equals

    Text Solution

    |

  2. If int(-pi//3)^(pi//3) [(a)/(3) |tan x| + (b tan x)/(1+sec x)+ c] dx =...

    Text Solution

    |

  3. f: R rarr R, g: R rarr R are continuous functions. The value of integr...

    Text Solution

    |

  4. int(-1)^(1) (x sin^(-1)x)/(sqrt(1-x^(2))) dx=

    Text Solution

    |

  5. int(-1)^(1) (x^(2) sin^(-1) [x])/(sqrt""(1-x^(2)))dx=

    Text Solution

    |

  6. int(-pi//2)^(pi//2) sin (|x|)dx=

    Text Solution

    |

  7. int(-pi)^(pi) (x^(3) + x cos x+ tan^(5) x +2)=

    Text Solution

    |

  8. int(-pi)^(pi) (2x(1+ sinx))/(1+ cos^(2))dx is

    Text Solution

    |

  9. overset(-pi//2)underset(-3pi//2)int{(x+pi)^(3)+cos^(2)(x+3pi)}dx, is

    Text Solution

    |

  10. Evaluate: int0^pi(xsin2xsin(pi/2cosx))/(2x-pi)dx

    Text Solution

    |

  11. Evaluate the following definite integral: int(-sqrt(2))^(sqrt(2))(2...

    Text Solution

    |

  12. The value of int(-2)^(2) (ax^(3) + bx+ c) dx depends on which followin...

    Text Solution

    |

  13. If f(x)= ax^(2) +bx +c such that f(0)=2 f'(0)= -3, f''(0) =4, then int...

    Text Solution

    |

  14. int(-pi//2)^(pi//2) sin^(2) x cos^(2) x (sin x +cos x) dx=

    Text Solution

    |

  15. The value of the integral int(-1//2)^(1//2) cos x log ((1+x)/(1-x)) dx

    Text Solution

    |

  16. The integral value of int(-2)^(0) [x^(3)+3x^(2) +3x +3+ (x+1) cos (x+1...

    Text Solution

    |

  17. The value of the integral int(-pi//4)^(pi//4) (1)/(sin^(4) x) dx is

    Text Solution

    |

  18. The value of the integral overset(1//2)underset(-1//2)int {((x+1)/(...

    Text Solution

    |

  19. The value of the integral int(-1)^(1) log (x+ sqrt(x^(2)+1)) dx is

    Text Solution

    |

  20. The value of overset(pi//2)underset(-pi//2)int sin{log(x+sqrt(x^(2)+1)...

    Text Solution

    |