Home
Class 12
MATHS
int(-1)^(1) (x sin^(-1)x)/(sqrt(1-x^(2))...

`int_(-1)^(1) (x sin^(-1)x)/(sqrt(1-x^(2))) dx`=

A

2

B

1

C

`-1`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-1}^{1} \frac{x \sin^{-1}(x)}{\sqrt{1 - x^2}} \, dx, \] we can use a substitution method. ### Step 1: Substitution Let \( t = \sin^{-1}(x) \). Then, we differentiate to find \( dx \): \[ x = \sin(t) \quad \Rightarrow \quad dx = \cos(t) \, dt. \] Also, we need to change the limits of integration. When \( x = -1 \), \( t = -\frac{\pi}{2} \) and when \( x = 1 \), \( t = \frac{\pi}{2} \). ### Step 2: Change the integral Substituting \( x \) and \( dx \) into the integral gives: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin(t) \cdot t \cdot \frac{\cos(t)}{\sqrt{1 - \sin^2(t)}} \, dt. \] Since \( \sqrt{1 - \sin^2(t)} = \cos(t) \), we can simplify this to: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t \cdot \sin(t) \, dt. \] ### Step 3: Integration by parts We will use integration by parts, where we let: - \( u = t \) and \( dv = \sin(t) \, dt \). Then, we differentiate and integrate: - \( du = dt \) and \( v = -\cos(t) \). Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ I = \left[ -t \cos(t) \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} - \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} -\cos(t) \, dt. \] ### Step 4: Evaluate the boundary term Calculating the boundary term: \[ -t \cos(t) \bigg|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \left(-\frac{\pi}{2} \cdot \cos\left(\frac{\pi}{2}\right)\right) - \left(-\left(-\frac{\pi}{2}\right) \cdot \cos\left(-\frac{\pi}{2}\right)\right) = 0 - 0 = 0. \] ### Step 5: Evaluate the remaining integral Now we need to evaluate: \[ I = 0 + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(t) \, dt. \] The integral of \( \cos(t) \) is: \[ \int \cos(t) \, dt = \sin(t) \bigg|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \sin\left(\frac{\pi}{2}\right) - \sin\left(-\frac{\pi}{2}\right) = 1 - (-1) = 2. \] ### Final Result Thus, the value of the integral is: \[ I = 2. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (3) True and False|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (3) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int(x sin^(-1)x)/(sqrt(1-x^(2)))dx

int(sin^(-1)x)/(sqrt(1-x^(2)))dx

int(sin^(-1)x)/(sqrt(1-x^(2)))dx

Evaluate: int_(0)^((1)/(2))(x sin^(-1)x)/(sqrt(1-x^(2)))dx

Evaluate the following : int_(0)^(1)((sin^(-1)x)^(2))/(sqrt(1-x^(2)))dx

int_(0)^(1) (x(sin^-1x)^(2))/sqrt(1-x^(2))dx =

int_(0)^(1)(sin^(-1)sqrt(x))/(sqrt(x(1-x)))dx

ML KHANNA-DEFINITE INTEGRAL-Problem set (3) (Multiple Choice Questions)
  1. If int(-pi//3)^(pi//3) [(a)/(3) |tan x| + (b tan x)/(1+sec x)+ c] dx =...

    Text Solution

    |

  2. f: R rarr R, g: R rarr R are continuous functions. The value of integr...

    Text Solution

    |

  3. int(-1)^(1) (x sin^(-1)x)/(sqrt(1-x^(2))) dx=

    Text Solution

    |

  4. int(-1)^(1) (x^(2) sin^(-1) [x])/(sqrt""(1-x^(2)))dx=

    Text Solution

    |

  5. int(-pi//2)^(pi//2) sin (|x|)dx=

    Text Solution

    |

  6. int(-pi)^(pi) (x^(3) + x cos x+ tan^(5) x +2)=

    Text Solution

    |

  7. int(-pi)^(pi) (2x(1+ sinx))/(1+ cos^(2))dx is

    Text Solution

    |

  8. overset(-pi//2)underset(-3pi//2)int{(x+pi)^(3)+cos^(2)(x+3pi)}dx, is

    Text Solution

    |

  9. Evaluate: int0^pi(xsin2xsin(pi/2cosx))/(2x-pi)dx

    Text Solution

    |

  10. Evaluate the following definite integral: int(-sqrt(2))^(sqrt(2))(2...

    Text Solution

    |

  11. The value of int(-2)^(2) (ax^(3) + bx+ c) dx depends on which followin...

    Text Solution

    |

  12. If f(x)= ax^(2) +bx +c such that f(0)=2 f'(0)= -3, f''(0) =4, then int...

    Text Solution

    |

  13. int(-pi//2)^(pi//2) sin^(2) x cos^(2) x (sin x +cos x) dx=

    Text Solution

    |

  14. The value of the integral int(-1//2)^(1//2) cos x log ((1+x)/(1-x)) dx

    Text Solution

    |

  15. The integral value of int(-2)^(0) [x^(3)+3x^(2) +3x +3+ (x+1) cos (x+1...

    Text Solution

    |

  16. The value of the integral int(-pi//4)^(pi//4) (1)/(sin^(4) x) dx is

    Text Solution

    |

  17. The value of the integral overset(1//2)underset(-1//2)int {((x+1)/(...

    Text Solution

    |

  18. The value of the integral int(-1)^(1) log (x+ sqrt(x^(2)+1)) dx is

    Text Solution

    |

  19. The value of overset(pi//2)underset(-pi//2)int sin{log(x+sqrt(x^(2)+1)...

    Text Solution

    |

  20. int(log 1//2)^(log 2) sin {(e^(x)-1)/(e^(x) +1}dx=

    Text Solution

    |