Home
Class 12
MATHS
int(-1)^(1) (x^(2) sin^(-1) [x])/(sqrt""...

`int_(-1)^(1) (x^(2) sin^(-1) [x])/(sqrt""(1-x^(2)))dx=`

A

1

B

2

C

0

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-1}^{1} \frac{x^2 \sin^{-1}(x)}{\sqrt{1 - x^2}} \, dx, \] we can follow these steps: ### Step 1: Substitution Let's use the substitution \( t = \sin^{-1}(x) \). Then, we have: \[ x = \sin(t) \quad \text{and} \quad dx = \cos(t) \, dt = \sqrt{1 - \sin^2(t)} \, dt = \sqrt{1 - x^2} \, dt. \] ### Step 2: Change of Limits When \( x = -1 \), \( t = \sin^{-1}(-1) = -\frac{\pi}{2} \). When \( x = 1 \), \( t = \sin^{-1}(1) = \frac{\pi}{2} \). Thus, the limits of integration change from \([-1, 1]\) to \([- \frac{\pi}{2}, \frac{\pi}{2}]\). ### Step 3: Rewrite the Integral Substituting \( x \) and \( dx \) into the integral, we get: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin^2(t) \cdot t}{\sqrt{1 - \sin^2(t)}} \cdot \cos(t) \, dt. \] Since \( \sqrt{1 - \sin^2(t)} = \cos(t) \), we can simplify the integral: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2(t) \cdot t \, dt. \] ### Step 4: Check the Function's Symmetry We need to check if \( f(-t) = -f(t) \) for the function \( f(t) = \sin^2(t) \cdot t \): \[ f(-t) = \sin^2(-t) \cdot (-t) = \sin^2(t) \cdot (-t) = -f(t). \] Since \( f(-t) = -f(t) \), the function is odd. ### Step 5: Evaluate the Integral For an odd function integrated over a symmetric interval around zero, the integral evaluates to zero: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(t) \, dt = 0. \] ### Final Result Thus, the value of the integral is: \[ I = 0. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (3) True and False|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (3) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int(x sin^(-1)x)/(sqrt(1-x^(2)))dx

int(sin^(-1)x)/(sqrt(1-x^(2)))dx

int(sin^(-1)x)/(sqrt(1-x^(2)))dx

Evaluate: int_(0)^((1)/(2))(x sin^(-1)x)/(sqrt(1-x^(2)))dx

int_(-1)^(1)(x sin^(-1)x)/(sqrt(1-x^(2)))dx

int_(0)^(1//sqrt(2))(x sin^(-1)x)/(sqrt(1-x^(2)))dx=

int((sin^(-1)x)^(3))/(sqrt(1-x^(2)))dx

Evaluate the following integrals: int(e^(x)[sqrt(1-x^(2))sin^(-1)x+1])/(sqrt(1-x^(2)))dx

ML KHANNA-DEFINITE INTEGRAL-Problem set (3) (Multiple Choice Questions)
  1. f: R rarr R, g: R rarr R are continuous functions. The value of integr...

    Text Solution

    |

  2. int(-1)^(1) (x sin^(-1)x)/(sqrt(1-x^(2))) dx=

    Text Solution

    |

  3. int(-1)^(1) (x^(2) sin^(-1) [x])/(sqrt""(1-x^(2)))dx=

    Text Solution

    |

  4. int(-pi//2)^(pi//2) sin (|x|)dx=

    Text Solution

    |

  5. int(-pi)^(pi) (x^(3) + x cos x+ tan^(5) x +2)=

    Text Solution

    |

  6. int(-pi)^(pi) (2x(1+ sinx))/(1+ cos^(2))dx is

    Text Solution

    |

  7. overset(-pi//2)underset(-3pi//2)int{(x+pi)^(3)+cos^(2)(x+3pi)}dx, is

    Text Solution

    |

  8. Evaluate: int0^pi(xsin2xsin(pi/2cosx))/(2x-pi)dx

    Text Solution

    |

  9. Evaluate the following definite integral: int(-sqrt(2))^(sqrt(2))(2...

    Text Solution

    |

  10. The value of int(-2)^(2) (ax^(3) + bx+ c) dx depends on which followin...

    Text Solution

    |

  11. If f(x)= ax^(2) +bx +c such that f(0)=2 f'(0)= -3, f''(0) =4, then int...

    Text Solution

    |

  12. int(-pi//2)^(pi//2) sin^(2) x cos^(2) x (sin x +cos x) dx=

    Text Solution

    |

  13. The value of the integral int(-1//2)^(1//2) cos x log ((1+x)/(1-x)) dx

    Text Solution

    |

  14. The integral value of int(-2)^(0) [x^(3)+3x^(2) +3x +3+ (x+1) cos (x+1...

    Text Solution

    |

  15. The value of the integral int(-pi//4)^(pi//4) (1)/(sin^(4) x) dx is

    Text Solution

    |

  16. The value of the integral overset(1//2)underset(-1//2)int {((x+1)/(...

    Text Solution

    |

  17. The value of the integral int(-1)^(1) log (x+ sqrt(x^(2)+1)) dx is

    Text Solution

    |

  18. The value of overset(pi//2)underset(-pi//2)int sin{log(x+sqrt(x^(2)+1)...

    Text Solution

    |

  19. int(log 1//2)^(log 2) sin {(e^(x)-1)/(e^(x) +1}dx=

    Text Solution

    |

  20. The value of overset(1//2)underset(-1//2)int |xcos((pix)/(2))|dx is

    Text Solution

    |