Home
Class 12
MATHS
If f(x)= ax^(2) +bx +c such that f(0)=2 ...

If `f(x)= ax^(2) +bx +c` such that f(0)=2 `f'(0)= -3, f''(0) =4`, then `int_(-1)^(1) f(x) dx`=

A

`-3`

B

`16//3`

C

0

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the instructions given in the video transcript. ### Step 1: Define the function We are given the function \( f(x) = ax^2 + bx + c \). ### Step 2: Use the given conditions We have the following conditions: 1. \( f(0) = 2 \) 2. \( f'(0) = -3 \) 3. \( f''(0) = 4 \) ### Step 3: Find the value of \( c \) From the condition \( f(0) = 2 \): \[ f(0) = a(0)^2 + b(0) + c = c = 2 \] Thus, \( c = 2 \). ### Step 4: Differentiate the function to find \( b \) The first derivative of \( f(x) \) is: \[ f'(x) = 2ax + b \] Using the condition \( f'(0) = -3 \): \[ f'(0) = 2a(0) + b = b = -3 \] Thus, \( b = -3 \). ### Step 5: Differentiate again to find \( a \) The second derivative of \( f(x) \) is: \[ f''(x) = 2a \] Using the condition \( f''(0) = 4 \): \[ f''(0) = 2a = 4 \implies a = 2 \] ### Step 6: Write the complete function Now we have: - \( a = 2 \) - \( b = -3 \) - \( c = 2 \) Thus, the function is: \[ f(x) = 2x^2 - 3x + 2 \] ### Step 7: Set up the integral We need to evaluate the integral: \[ \int_{-1}^{1} f(x) \, dx = \int_{-1}^{1} (2x^2 - 3x + 2) \, dx \] ### Step 8: Compute the integral We can split the integral: \[ \int_{-1}^{1} (2x^2 - 3x + 2) \, dx = \int_{-1}^{1} 2x^2 \, dx - \int_{-1}^{1} 3x \, dx + \int_{-1}^{1} 2 \, dx \] Calculating each part: 1. **For \( \int_{-1}^{1} 2x^2 \, dx \)**: \[ \int 2x^2 \, dx = \frac{2x^3}{3} \Big|_{-1}^{1} = \left(\frac{2(1)^3}{3} - \frac{2(-1)^3}{3}\right) = \frac{2}{3} - \left(-\frac{2}{3}\right) = \frac{4}{3} \] 2. **For \( \int_{-1}^{1} 3x \, dx \)**: \[ \int 3x \, dx = \frac{3x^2}{2} \Big|_{-1}^{1} = \left(\frac{3(1)^2}{2} - \frac{3(-1)^2}{2}\right) = \frac{3}{2} - \frac{3}{2} = 0 \] 3. **For \( \int_{-1}^{1} 2 \, dx \)**: \[ \int 2 \, dx = 2x \Big|_{-1}^{1} = 2(1) - 2(-1) = 2 + 2 = 4 \] ### Step 9: Combine results Now, we combine the results: \[ \int_{-1}^{1} f(x) \, dx = \frac{4}{3} - 0 + 4 = \frac{4}{3} + \frac{12}{3} = \frac{16}{3} \] ### Final Answer Thus, the value of the integral is: \[ \int_{-1}^{1} f(x) \, dx = \frac{16}{3} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (3) True and False|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (3) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

if f(x)=|x-1| then int_(0)^(2)f(x)dx is

If f(x) is a polynomial of degree 2, such that f(0)=3,f'(0)=-7,f''(0)=8 int_(1)^(2)f(x)dx=

If f(x)+f(2-x)=0 , then int_(0)^(2)(1)/(1+2^(f(x)))dx=

If f(x)+f(2-x)=0 , then int_(0)^(2)(1)/(1+2^(f(x)))dx=

If f(0)=2, f'(x) =f(x), phi (x) = x+f(x) then int_(0)^(1) f(x) phi (x) dx is

Let a gt 0 and f(x) is monotonic increase such that f(0)=0 and f(a)=b, "then " int_(0)^(a) f(x) dx +int_(0)^(b) f^(-1) (x) dx is equal to

The numbers A, B and C such that a function of the form f(x) = Ax^(2) + Bx + C satisfies the conditions f'(1)= 8, f(2) + f''(2) = 33 and int_(0)^(1) f(x) dx=7//3 , are

Let f(x) be a function such that f'((1)/(x))+x^(3)f'(x)=0. What is int_(-1)^(1)f(x)dx

A continous function f(x) is such that f(3x)=2f(x), AA x in R . If int_(0)^(1)f(x)dx=1, then int_(1)^(3)f(x)dx is equal to

ML KHANNA-DEFINITE INTEGRAL-Problem set (3) (Multiple Choice Questions)
  1. Evaluate the following definite integral: int(-sqrt(2))^(sqrt(2))(2...

    Text Solution

    |

  2. The value of int(-2)^(2) (ax^(3) + bx+ c) dx depends on which followin...

    Text Solution

    |

  3. If f(x)= ax^(2) +bx +c such that f(0)=2 f'(0)= -3, f''(0) =4, then int...

    Text Solution

    |

  4. int(-pi//2)^(pi//2) sin^(2) x cos^(2) x (sin x +cos x) dx=

    Text Solution

    |

  5. The value of the integral int(-1//2)^(1//2) cos x log ((1+x)/(1-x)) dx

    Text Solution

    |

  6. The integral value of int(-2)^(0) [x^(3)+3x^(2) +3x +3+ (x+1) cos (x+1...

    Text Solution

    |

  7. The value of the integral int(-pi//4)^(pi//4) (1)/(sin^(4) x) dx is

    Text Solution

    |

  8. The value of the integral overset(1//2)underset(-1//2)int {((x+1)/(...

    Text Solution

    |

  9. The value of the integral int(-1)^(1) log (x+ sqrt(x^(2)+1)) dx is

    Text Solution

    |

  10. The value of overset(pi//2)underset(-pi//2)int sin{log(x+sqrt(x^(2)+1)...

    Text Solution

    |

  11. int(log 1//2)^(log 2) sin {(e^(x)-1)/(e^(x) +1}dx=

    Text Solution

    |

  12. The value of overset(1//2)underset(-1//2)int |xcos((pix)/(2))|dx is

    Text Solution

    |

  13. The function F(x)= int(0)^(x) log (t+ sqrt(1+t^(2)))dt is

    Text Solution

    |

  14. The function F(x)= int(0)^(pi) "log" ((1-x))/((1+x)) dx is a function ...

    Text Solution

    |

  15. The antiderivative of every odd function is an

    Text Solution

    |

  16. If n in N, then int(-n)^(n) (-1)^([x]) dx equals

    Text Solution

    |

  17. int(-1)^(1) (sqrt(1+x+x^(2))-sqrt(1-x+x^(2))) dx =

    Text Solution

    |

  18. The value of int(-pi)^(pi) (1-x^(2)) sin x cos^(2) x dx is

    Text Solution

    |

  19. int(-1)^(1) (sin x-x^(2))/(3-|x|)=

    Text Solution

    |

  20. If f(x) + f(Y) = f(x+y) and int(0)^(3) f(x) dx= lamda, then int(-3)^(3...

    Text Solution

    |