Home
Class 12
MATHS
The value of the integral int(-pi//4)^(p...

The value of the integral `int_(-pi//4)^(pi//4) (1)/(sin^(4) x) dx` is

A

`-8//3`

B

`3//2`

C

`8//3`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{\sin^4 x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{\sin^4 x} \, dx \] We can use the identity \( \sin^2 x = 1 - \cos^2 x \) to rewrite \( \sin^4 x \): \[ \sin^4 x = (\sin^2 x)^2 = (1 - \cos^2 x)^2 \] Thus, we can express the integral in terms of cosine. ### Step 2: Use a Trigonometric Identity Using the identity \( \frac{1}{\sin^4 x} = \frac{1}{\sin^2 x} \cdot \frac{1}{\sin^2 x} \): \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \csc^2 x \cdot \csc^2 x \, dx \] We know that \( \csc^2 x = 1 + \cot^2 x \), so we can rewrite the integral: \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} (1 + \cot^2 x) \, dx \] ### Step 3: Change of Variable Let \( t = \cot x \), then \( dt = -\csc^2 x \, dx \). Thus, \( dx = -\frac{dt}{\csc^2 x} \). The limits change as follows: - When \( x = -\frac{\pi}{4} \), \( t = -1 \) - When \( x = \frac{\pi}{4} \), \( t = 1 \) Now we can express the integral in terms of \( t \): \[ I = \int_{-1}^{1} (1 + t^2) \left(-\frac{dt}{1+t^2}\right) \] This simplifies to: \[ I = -\int_{-1}^{1} dt \] ### Step 4: Evaluate the Integral Now we can evaluate the integral: \[ I = -\left[t\right]_{-1}^{1} = -\left(1 - (-1)\right) = -2 \] ### Step 5: Final Result Thus, the value of the integral is: \[ I = -2 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (3) True and False|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (3) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(-pi//2)^(pi//2)(sin^(2)x)/(1+e^(x))dx is

int_(-pi//4)^(pi//4) dx/(1-sin x)=

Knowledge Check

  • The value of the integral int_(-pi//2)^(pi//2) (sin^2 x)/(1+e^x ) dx is

    A
    `(pi)/(6) `
    B
    `(pi)/(4)`
    C
    `(pi)/(2)`
    D
    `(pi^2)/(2)`
  • The value of the integral int_(0)^(pi//4) sin^(-4)x dx , is

    A
    `-(8)/(3)`
    B
    `(3)/(2)`
    C
    `(8)/(3)`
    D
    none of these
  • The value of the integral int_(-pi//2)^(pi//2) sin^(4) x (1+ log ((2+ sinx)/( 2- sin x))) dx is

    A
    `(3)/(8) pi`
    B
    `0`
    C
    `(3)/( 16) pi`
    D
    `(3)/(8)`
  • Similar Questions

    Explore conceptually related problems

    int_(-pi//4)^(pi//4) dx/(1+sin x)=

    The value of the integral int_(-3pi//4)^(5pi//4)((sinx+cosx))/(e^(x-pi//4)+1)dx is

    int_(-pi//4)^(pi//4) e^(-x)sin x" dx" is

    The value of int_(-pi//4)^(pi//4)(sinx)^(-4) x dx is

    int_(-pi//4)^(pi//4)sin^(2)x dx=