Home
Class 12
MATHS
The value of the integral int(-pi//4)^(p...

The value of the integral `int_(-pi//4)^(pi//4) (1)/(sin^(4) x) dx` is

A

`-8//3`

B

`3//2`

C

`8//3`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{\sin^4 x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{\sin^4 x} \, dx \] We can use the identity \( \sin^2 x = 1 - \cos^2 x \) to rewrite \( \sin^4 x \): \[ \sin^4 x = (\sin^2 x)^2 = (1 - \cos^2 x)^2 \] Thus, we can express the integral in terms of cosine. ### Step 2: Use a Trigonometric Identity Using the identity \( \frac{1}{\sin^4 x} = \frac{1}{\sin^2 x} \cdot \frac{1}{\sin^2 x} \): \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \csc^2 x \cdot \csc^2 x \, dx \] We know that \( \csc^2 x = 1 + \cot^2 x \), so we can rewrite the integral: \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} (1 + \cot^2 x) \, dx \] ### Step 3: Change of Variable Let \( t = \cot x \), then \( dt = -\csc^2 x \, dx \). Thus, \( dx = -\frac{dt}{\csc^2 x} \). The limits change as follows: - When \( x = -\frac{\pi}{4} \), \( t = -1 \) - When \( x = \frac{\pi}{4} \), \( t = 1 \) Now we can express the integral in terms of \( t \): \[ I = \int_{-1}^{1} (1 + t^2) \left(-\frac{dt}{1+t^2}\right) \] This simplifies to: \[ I = -\int_{-1}^{1} dt \] ### Step 4: Evaluate the Integral Now we can evaluate the integral: \[ I = -\left[t\right]_{-1}^{1} = -\left(1 - (-1)\right) = -2 \] ### Step 5: Final Result Thus, the value of the integral is: \[ I = -2 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (3) True and False|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (3) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(-pi//2)^(pi//2)(sin^(2)x)/(1+e^(x))dx is

The value of the integral int_(0)^(pi//4) sin^(-4)x dx , is

The value of the integral int_(-pi//2)^(pi//2) sin^(4) x (1+ log ((2+ sinx)/( 2- sin x))) dx is

int_(-pi//4)^(pi//4) dx/(1-sin x)=

int_(-pi//4)^(pi//4) dx/(1+sin x)=

The value of the integral int_(-3pi//4)^(5pi//4)((sinx+cosx))/(e^(x-pi//4)+1)dx is

int_(-pi//4)^(pi//4) e^(-x)sin x" dx" is

int_(-pi//4)^(pi//4)sin^(2)x dx=

ML KHANNA-DEFINITE INTEGRAL-Problem set (3) (Multiple Choice Questions)
  1. The value of the integral int(-1//2)^(1//2) cos x log ((1+x)/(1-x)) dx

    Text Solution

    |

  2. The integral value of int(-2)^(0) [x^(3)+3x^(2) +3x +3+ (x+1) cos (x+1...

    Text Solution

    |

  3. The value of the integral int(-pi//4)^(pi//4) (1)/(sin^(4) x) dx is

    Text Solution

    |

  4. The value of the integral overset(1//2)underset(-1//2)int {((x+1)/(...

    Text Solution

    |

  5. The value of the integral int(-1)^(1) log (x+ sqrt(x^(2)+1)) dx is

    Text Solution

    |

  6. The value of overset(pi//2)underset(-pi//2)int sin{log(x+sqrt(x^(2)+1)...

    Text Solution

    |

  7. int(log 1//2)^(log 2) sin {(e^(x)-1)/(e^(x) +1}dx=

    Text Solution

    |

  8. The value of overset(1//2)underset(-1//2)int |xcos((pix)/(2))|dx is

    Text Solution

    |

  9. The function F(x)= int(0)^(x) log (t+ sqrt(1+t^(2)))dt is

    Text Solution

    |

  10. The function F(x)= int(0)^(pi) "log" ((1-x))/((1+x)) dx is a function ...

    Text Solution

    |

  11. The antiderivative of every odd function is an

    Text Solution

    |

  12. If n in N, then int(-n)^(n) (-1)^([x]) dx equals

    Text Solution

    |

  13. int(-1)^(1) (sqrt(1+x+x^(2))-sqrt(1-x+x^(2))) dx =

    Text Solution

    |

  14. The value of int(-pi)^(pi) (1-x^(2)) sin x cos^(2) x dx is

    Text Solution

    |

  15. int(-1)^(1) (sin x-x^(2))/(3-|x|)=

    Text Solution

    |

  16. If f(x) + f(Y) = f(x+y) and int(0)^(3) f(x) dx= lamda, then int(-3)^(3...

    Text Solution

    |

  17. I= int(-pi//3)^(pi//3) (x sin x)/(cos^(2)x) dx is equal to

    Text Solution

    |

  18. The value of the integral overset(1)underset(-1)int sin^(11)x" dx" is

    Text Solution

    |

  19. The value of int(-1)^(1) sin^(3) x cos^(2)xdx is

    Text Solution

    |

  20. If f is an odd function, then I= int(-a)^(a) (f (sin theta))/(f (cos t...

    Text Solution

    |