Home
Class 12
MATHS
The value of the integral int(-1)^(1) lo...

The value of the integral `int_(-1)^(1) log (x+ sqrt(x^(2)+1)) dx` is

A

0

B

log 2

C

log (1//2)

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-1}^{1} \log(x + \sqrt{x^2 + 1}) \, dx \), we will use the property of definite integrals and the symmetry of the function involved. ### Step 1: Define the function Let \[ f(x) = \log(x + \sqrt{x^2 + 1}). \] ### Step 2: Find \( f(-x) \) Now, we will compute \( f(-x) \): \[ f(-x) = \log(-x + \sqrt{(-x)^2 + 1}) = \log(-x + \sqrt{x^2 + 1}). \] ### Step 3: Simplify \( f(-x) \) We can rewrite \( f(-x) \) using properties of logarithms: \[ f(-x) = \log\left(\sqrt{x^2 + 1} - x\right). \] ### Step 4: Relate \( f(-x) \) to \( f(x) \) Next, we can express \( f(-x) \) in terms of \( f(x) \): \[ f(-x) = \log\left(\frac{1}{x + \sqrt{x^2 + 1}}\right) = -\log(x + \sqrt{x^2 + 1}) = -f(x). \] This shows that: \[ f(-x) = -f(x). \] ### Step 5: Apply the property of definite integrals Since \( f(-x) = -f(x) \), we can use the property of definite integrals: \[ \int_{-a}^{a} f(x) \, dx = 0 \text{ if } f(-x) = -f(x). \] Thus, we have: \[ \int_{-1}^{1} f(x) \, dx = \int_{-1}^{1} \log(x + \sqrt{x^2 + 1}) \, dx = 0. \] ### Conclusion Therefore, the value of the integral is: \[ \int_{-1}^{1} \log(x + \sqrt{x^2 + 1}) \, dx = 0. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (3) True and False|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (3) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(-a)^(a) log (x+ sqrt(x^(2) + 1 ) ) dx

The value of integral int_(1)^(e) (log x)^(3)dx , is

The value of the integral int_(-1)^(1) (x-[2x]) dx,is

The value of the integral int_(-1)^(1)log_(e)(sqrt(1-x)+sqrt(1+x))dx is equal to :

The value of the integral int_(0)^(1)(sqrt(x))/(1+x^(2))dx is

The value of the integral int_(0)^(1) log sin ((pix)/(2))dx is

The value of the integral int_(1)^(3)|(x-1)(x-2)|dx is

int_(0)^(1)(log x)/(sqrt(1-x^(2)))dx

The value of the integral int_(-1//2)^(1//2) cos x log((1+x)/(1-x))dx , is

ML KHANNA-DEFINITE INTEGRAL-Problem set (3) (Multiple Choice Questions)
  1. The value of the integral int(-pi//4)^(pi//4) (1)/(sin^(4) x) dx is

    Text Solution

    |

  2. The value of the integral overset(1//2)underset(-1//2)int {((x+1)/(...

    Text Solution

    |

  3. The value of the integral int(-1)^(1) log (x+ sqrt(x^(2)+1)) dx is

    Text Solution

    |

  4. The value of overset(pi//2)underset(-pi//2)int sin{log(x+sqrt(x^(2)+1)...

    Text Solution

    |

  5. int(log 1//2)^(log 2) sin {(e^(x)-1)/(e^(x) +1}dx=

    Text Solution

    |

  6. The value of overset(1//2)underset(-1//2)int |xcos((pix)/(2))|dx is

    Text Solution

    |

  7. The function F(x)= int(0)^(x) log (t+ sqrt(1+t^(2)))dt is

    Text Solution

    |

  8. The function F(x)= int(0)^(pi) "log" ((1-x))/((1+x)) dx is a function ...

    Text Solution

    |

  9. The antiderivative of every odd function is an

    Text Solution

    |

  10. If n in N, then int(-n)^(n) (-1)^([x]) dx equals

    Text Solution

    |

  11. int(-1)^(1) (sqrt(1+x+x^(2))-sqrt(1-x+x^(2))) dx =

    Text Solution

    |

  12. The value of int(-pi)^(pi) (1-x^(2)) sin x cos^(2) x dx is

    Text Solution

    |

  13. int(-1)^(1) (sin x-x^(2))/(3-|x|)=

    Text Solution

    |

  14. If f(x) + f(Y) = f(x+y) and int(0)^(3) f(x) dx= lamda, then int(-3)^(3...

    Text Solution

    |

  15. I= int(-pi//3)^(pi//3) (x sin x)/(cos^(2)x) dx is equal to

    Text Solution

    |

  16. The value of the integral overset(1)underset(-1)int sin^(11)x" dx" is

    Text Solution

    |

  17. The value of int(-1)^(1) sin^(3) x cos^(2)xdx is

    Text Solution

    |

  18. If f is an odd function, then I= int(-a)^(a) (f (sin theta))/(f (cos t...

    Text Solution

    |

  19. If f(x)= {(e^(cos x)sin x,"for " |x| le 2),(2,"otherwise"):} then int(...

    Text Solution

    |

  20. int(-1)^(1)(x^(2)+sin x)/(1+x^(2))dx=

    Text Solution

    |