Home
Class 12
MATHS
The function F(x)= int(0)^(pi) "log" ((1...

The function `F(x)= int_(0)^(pi) "log" ((1-x))/((1+x)) dx` is a function which is

A

even

B

odd

C

periodic

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function defined by the integral: \[ F(x) = \int_{0}^{\pi} \log\left(\frac{1 - x}{1 + x}\right) \, dx \] We want to determine whether this function is even, odd, or periodic. ### Step-by-Step Solution: 1. **Define the Function**: We start with the definition of the function: \[ F(x) = \int_{0}^{\pi} \log\left(\frac{1 - x}{1 + x}\right) \, dx \] 2. **Substitute \( -x \)**: To check if \( F(x) \) is odd, we need to compute \( F(-x) \): \[ F(-x) = \int_{0}^{\pi} \log\left(\frac{1 - (-x)}{1 + (-x)}\right) \, dx = \int_{0}^{\pi} \log\left(\frac{1 + x}{1 - x}\right) \, dx \] 3. **Use Logarithmic Properties**: We can rewrite the logarithm: \[ F(-x) = \int_{0}^{\pi} \log\left(\frac{1 + x}{1 - x}\right) \, dx = \int_{0}^{\pi} -\log\left(\frac{1 - x}{1 + x}\right) \, dx \] This simplifies to: \[ F(-x) = -\int_{0}^{\pi} \log\left(\frac{1 - x}{1 + x}\right) \, dx = -F(x) \] 4. **Conclusion**: Since \( F(-x) = -F(x) \), we conclude that \( F(x) \) is an odd function. ### Final Result: Thus, the function \( F(x) \) is an odd function.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (3) True and False|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (3) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

The function F(x)=int_(0)^(x) log((1-x)/(1+x))dx , is

The function F(x)=int_(0)^(x)log((1-x)/(1+x))dx is

The function f(x)=int_(0)^(x)log_(e)((1-x)/(1+x))backslash dx is

int_(0)^( pi)log(1+cos x)dx

int_(0)^(1)(log(1+x))/(1+x^(2))dx

int_(0)^(pi//4) log (1+tan x) dx =?

int_(0)^(1)(log(1+x))/(1+x)dx

ML KHANNA-DEFINITE INTEGRAL-Problem set (3) (Multiple Choice Questions)
  1. The value of the integral overset(1//2)underset(-1//2)int {((x+1)/(...

    Text Solution

    |

  2. The value of the integral int(-1)^(1) log (x+ sqrt(x^(2)+1)) dx is

    Text Solution

    |

  3. The value of overset(pi//2)underset(-pi//2)int sin{log(x+sqrt(x^(2)+1)...

    Text Solution

    |

  4. int(log 1//2)^(log 2) sin {(e^(x)-1)/(e^(x) +1}dx=

    Text Solution

    |

  5. The value of overset(1//2)underset(-1//2)int |xcos((pix)/(2))|dx is

    Text Solution

    |

  6. The function F(x)= int(0)^(x) log (t+ sqrt(1+t^(2)))dt is

    Text Solution

    |

  7. The function F(x)= int(0)^(pi) "log" ((1-x))/((1+x)) dx is a function ...

    Text Solution

    |

  8. The antiderivative of every odd function is an

    Text Solution

    |

  9. If n in N, then int(-n)^(n) (-1)^([x]) dx equals

    Text Solution

    |

  10. int(-1)^(1) (sqrt(1+x+x^(2))-sqrt(1-x+x^(2))) dx =

    Text Solution

    |

  11. The value of int(-pi)^(pi) (1-x^(2)) sin x cos^(2) x dx is

    Text Solution

    |

  12. int(-1)^(1) (sin x-x^(2))/(3-|x|)=

    Text Solution

    |

  13. If f(x) + f(Y) = f(x+y) and int(0)^(3) f(x) dx= lamda, then int(-3)^(3...

    Text Solution

    |

  14. I= int(-pi//3)^(pi//3) (x sin x)/(cos^(2)x) dx is equal to

    Text Solution

    |

  15. The value of the integral overset(1)underset(-1)int sin^(11)x" dx" is

    Text Solution

    |

  16. The value of int(-1)^(1) sin^(3) x cos^(2)xdx is

    Text Solution

    |

  17. If f is an odd function, then I= int(-a)^(a) (f (sin theta))/(f (cos t...

    Text Solution

    |

  18. If f(x)= {(e^(cos x)sin x,"for " |x| le 2),(2,"otherwise"):} then int(...

    Text Solution

    |

  19. int(-1)^(1)(x^(2)+sin x)/(1+x^(2))dx=

    Text Solution

    |

  20. The value of int(-a)^a(cos^(- 1)x-sin^(- 1)sqrt(1-x^2))dx is (a>0) t...

    Text Solution

    |