Home
Class 12
MATHS
int(-1)^(1) (sin x-x^(2))/(3-|x|)=...

`int_(-1)^(1) (sin x-x^(2))/(3-|x|)=`

A

0

B

`2 int_(1)^(0) (sin x)/(3-|x|) dx`

C

`2 int_(0)^(1) (-x^(2))/(3-|x|) dx`

D

`2 int_(0)^(1) (sin x-x^(2))/(3-|x|) -dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-1}^{1} \frac{\sin x - x^2}{3 - |x|} \, dx, \] we can split this integral into two parts based on the properties of the functions involved. ### Step 1: Split the Integral We can write the integral as: \[ I = \int_{-1}^{1} \frac{\sin x}{3 - |x|} \, dx - \int_{-1}^{1} \frac{x^2}{3 - |x|} \, dx. \] Let’s denote these two integrals as \( I_1 \) and \( I_2 \): \[ I_1 = \int_{-1}^{1} \frac{\sin x}{3 - |x|} \, dx, \] \[ I_2 = \int_{-1}^{1} \frac{x^2}{3 - |x|} \, dx. \] ### Step 2: Analyze \( I_1 \) To determine if \( I_1 \) is zero, we check if the function \( f(x) = \frac{\sin x}{3 - |x|} \) is odd. Calculating \( f(-x) \): \[ f(-x) = \frac{\sin(-x)}{3 - |-x|} = \frac{-\sin x}{3 - |x|} = -f(x). \] Since \( f(-x) = -f(x) \), \( f(x) \) is an odd function. Therefore, the integral of an odd function over a symmetric interval around zero is zero: \[ I_1 = 0. \] ### Step 3: Analyze \( I_2 \) Now, we check \( I_2 \): \[ I_2 = \int_{-1}^{1} \frac{x^2}{3 - |x|} \, dx. \] To check if this function is even, we compute \( f(-x) \): \[ f(-x) = \frac{(-x)^2}{3 - |-x|} = \frac{x^2}{3 - |x|} = f(x). \] Since \( f(-x) = f(x) \), \( f(x) \) is an even function. Therefore, we can use the property of even functions: \[ I_2 = 2 \int_{0}^{1} \frac{x^2}{3 - x} \, dx. \] ### Step 4: Substitute Back Now we can substitute back into our original integral: \[ I = I_1 - I_2 = 0 - 2 \int_{0}^{1} \frac{x^2}{3 - x} \, dx = -2 \int_{0}^{1} \frac{x^2}{3 - x} \, dx. \] ### Step 5: Evaluate the Integral Now we need to evaluate \( \int_{0}^{1} \frac{x^2}{3 - x} \, dx \). We can use integration by parts or a substitution method to solve this integral. Let’s perform the integration: \[ \int \frac{x^2}{3 - x} \, dx. \] Using the substitution \( u = 3 - x \), \( du = -dx \), we can change the limits accordingly: When \( x = 0 \), \( u = 3 \) and when \( x = 1 \), \( u = 2 \). Thus, \[ \int_{0}^{1} \frac{x^2}{3 - x} \, dx = \int_{3}^{2} \frac{(3 - u)^2}{u} (-du) = \int_{2}^{3} \frac{(3 - u)^2}{u} \, du. \] Now we can evaluate this integral. ### Final Result After evaluating the integral, we can substitute back to find \( I \): \[ I = -2 \cdot \text{(value of the integral)}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (3) True and False|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (3) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise ProblemSet (2) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(-1)^(1)sin^(2) x dx

int_(-1)^(3)sin(x-[x])dx

int_(-1)^(1)(x^(2)+sin x)dx=

int_(-1)^(1)((sin^(-1)x)^(2)dx)/(1+pi^(sin x))is

int_(-1)^(1)(x^(4)+sin^(3)x)dx

int(1)/((3sin x+cos x)^(2))dx

The value of int_(-1)^(1)(sin^(-1)x+(x^(5)+x^(3)-1)/(cosx))dx is equal to

If (a,b) be the orthocentre of the triangle whose vertices are (1,2),(2,3) and (3,1) ,and I_(1)=int_(a)^(b)x sin(4x-x^(2))dx,I_(2)=int_(a)^(b)sin(4x-x^(2))dx ,then 36(I_(1))/(I_(2)) is equal to:

I_(1)=int_(1)^(2)sqrt(sin(3x-x^(2)-2))dx and I_(2)=int_(1)^(3)sqrt(sin((4x-x^(2)-3)/(4)))dx then the value of 2I_(1)-I_(2) is

ML KHANNA-DEFINITE INTEGRAL-Problem set (3) (Multiple Choice Questions)
  1. The value of the integral overset(1//2)underset(-1//2)int {((x+1)/(...

    Text Solution

    |

  2. The value of the integral int(-1)^(1) log (x+ sqrt(x^(2)+1)) dx is

    Text Solution

    |

  3. The value of overset(pi//2)underset(-pi//2)int sin{log(x+sqrt(x^(2)+1)...

    Text Solution

    |

  4. int(log 1//2)^(log 2) sin {(e^(x)-1)/(e^(x) +1}dx=

    Text Solution

    |

  5. The value of overset(1//2)underset(-1//2)int |xcos((pix)/(2))|dx is

    Text Solution

    |

  6. The function F(x)= int(0)^(x) log (t+ sqrt(1+t^(2)))dt is

    Text Solution

    |

  7. The function F(x)= int(0)^(pi) "log" ((1-x))/((1+x)) dx is a function ...

    Text Solution

    |

  8. The antiderivative of every odd function is an

    Text Solution

    |

  9. If n in N, then int(-n)^(n) (-1)^([x]) dx equals

    Text Solution

    |

  10. int(-1)^(1) (sqrt(1+x+x^(2))-sqrt(1-x+x^(2))) dx =

    Text Solution

    |

  11. The value of int(-pi)^(pi) (1-x^(2)) sin x cos^(2) x dx is

    Text Solution

    |

  12. int(-1)^(1) (sin x-x^(2))/(3-|x|)=

    Text Solution

    |

  13. If f(x) + f(Y) = f(x+y) and int(0)^(3) f(x) dx= lamda, then int(-3)^(3...

    Text Solution

    |

  14. I= int(-pi//3)^(pi//3) (x sin x)/(cos^(2)x) dx is equal to

    Text Solution

    |

  15. The value of the integral overset(1)underset(-1)int sin^(11)x" dx" is

    Text Solution

    |

  16. The value of int(-1)^(1) sin^(3) x cos^(2)xdx is

    Text Solution

    |

  17. If f is an odd function, then I= int(-a)^(a) (f (sin theta))/(f (cos t...

    Text Solution

    |

  18. If f(x)= {(e^(cos x)sin x,"for " |x| le 2),(2,"otherwise"):} then int(...

    Text Solution

    |

  19. int(-1)^(1)(x^(2)+sin x)/(1+x^(2))dx=

    Text Solution

    |

  20. The value of int(-a)^a(cos^(- 1)x-sin^(- 1)sqrt(1-x^2))dx is (a>0) t...

    Text Solution

    |