Home
Class 12
MATHS
If f(a+b-x)= f(x), then int(a)^(b) x f(x...

If `f(a+b-x)= f(x)`, then `int_(a)^(b) x f(x) dx` is equal to

A

`(a+b)/(2) int_(a)^(b) f(b-x) dx`

B

`(a+b)/(2) int_(a)^(b) f(x) dx`

C

`(b-a)/(2) int_(a)^(b) f(x) dx`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( I = \int_a^b x f(x) \, dx \) given the condition \( f(a+b-x) = f(x) \). ### Step-by-step Solution: **Step 1: Define the integral.** Let: \[ I = \int_a^b x f(x) \, dx \] **Step 2: Use the property of definite integrals.** We can use the substitution \( u = a + b - x \). Then, \( du = -dx \). When \( x = a \), \( u = a + b - a = b \), and when \( x = b \), \( u = a + b - b = a \). Thus, we can rewrite the integral as: \[ I = \int_b^a (a + b - u) f(a + b - u) (-du) \] Reversing the limits of integration gives: \[ I = \int_a^b (a + b - u) f(a + b - u) \, du \] **Step 3: Substitute the condition.** Using the condition \( f(a+b-u) = f(u) \), we can replace \( f(a+b-u) \) with \( f(u) \): \[ I = \int_a^b (a + b - u) f(u) \, du \] **Step 4: Expand the integral.** Now, we can expand the integral: \[ I = \int_a^b (a + b) f(u) \, du - \int_a^b u f(u) \, du \] This simplifies to: \[ I = (a + b) \int_a^b f(u) \, du - I \] **Step 5: Solve for \( I \).** Adding \( I \) to both sides gives: \[ 2I = (a + b) \int_a^b f(u) \, du \] Thus, we have: \[ I = \frac{(a + b)}{2} \int_a^b f(x) \, dx \] ### Final Result: Therefore, the value of the integral \( \int_a^b x f(x) \, dx \) is: \[ \int_a^b x f(x) \, dx = \frac{(a + b)}{2} \int_a^b f(x) \, dx \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) True and false|3 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (3) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

If (2a+2b-x)=f(x), then int_(2a)^(2b)xf(x)dx is equal to

If f(x)=f(a+b-x), then int_(a)^(b) xf(x)dx is equal to

int _(a) ^(b) f (x) dx =

If f(a+x)=f(x), then int_(0)^(na) f(x)dx is equal to (n in N)

If f(a+x)=f(x), then int_(0)^(na)f(x)dx is equal to n in N

If 2f(x) - 3 f(1//x) = x," then " int_(1)^(2) f(x) dx is equal to

If f(x) = f(a+x) and int_(0)^(a) f(x) dx = k, "then" int _(0)^(na) f(x) dx is equal to

ML KHANNA-DEFINITE INTEGRAL-Problem set (4) (Multiple Choice Questions)
  1. The value of int(0)^(2pi) cos^(99) x dx is

    Text Solution

    |

  2. int(a)^(b) (f(x))/(f(x) +f(a+b-x))dx=

    Text Solution

    |

  3. int(1)^(5) (sqrt""x)/(sqrt""(6-x) + sqrt""x) dx=

    Text Solution

    |

  4. int(3)^(6) (sqrt""x)/(sqrt""(9-x) + sqrt""x) dx=

    Text Solution

    |

  5. If f(a+b-x)= f(x), then int(a)^(b) x f(x) dx is equal to

    Text Solution

    |

  6. If overset(b)underset(a)int (x^(n))/(x^(4)+(16-x)^(n))dx=6, then

    Text Solution

    |

  7. If f(3-x)= f(x), then int(1)^(2) xf(x) dx is equal to

    Text Solution

    |

  8. For any t in R and f be a continuous function Let I(1)= int(sin^(2)t...

    Text Solution

    |

  9. If f(x) is an integrable function in ((pi)/(6), (pi)/(3)) and I(1)= in...

    Text Solution

    |

  10. Let f be a positive function. Let I(1) int(1-k)^(k) x.f {x(1-x)} dx, I...

    Text Solution

    |

  11. If f(x)= (e^(x))/(1+e^(x)), I(1)= int(f(-a))^(f(a)) xg {x(1-x)}dx and ...

    Text Solution

    |

  12. The value of int(1//n)^((a n-1)//n) (sqrtx)/(sqrt(a-x) + sqrtx)dx is e...

    Text Solution

    |

  13. If [x] stands for the greatest integer function, the value of int(4)^(...

    Text Solution

    |

  14. int(pi//4)^(3pi//4) (dx)/(1+ cos x) is equal to

    Text Solution

    |

  15. int(-pi//2)^(pi//2) (cos x dx)/(1+ e^(x))=

    Text Solution

    |

  16. int(0)^(pi) (dx)/(1+2^(tan x))=

    Text Solution

    |

  17. int(-pi//2)^(pi//2) (pi^(sin x))/(1+ pi^(sin x))dx=

    Text Solution

    |

  18. The value of int(-pi//2)^(pi//2) (dx)/(e^(sin x) +1) is equal to

    Text Solution

    |

  19. int(0)^(pi) (dx)/(1+ 4^(cos x))=

    Text Solution

    |

  20. The value of the integral int(-pi)^(pi)(cos^(2)x)/(1+a^(x))"dx", where...

    Text Solution

    |