Home
Class 12
MATHS
If f(3-x)= f(x), then int(1)^(2) xf(x) d...

If `f(3-x)= f(x)`, then `int_(1)^(2) xf(x) dx` is equal to

A

`(3)/(2) int_(1)^(2) f(2-x) dx`

B

`(3)/(2) int_(1)^(2) f(x) dx`

C

`(1)/(2) int_(1)^(2) f(x) dx`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{1}^{2} x f(x) \, dx \) given the condition \( f(3-x) = f(x) \), we can use a property of definite integrals. Here’s a step-by-step solution: ### Step 1: Define the Integral Let \[ I = \int_{1}^{2} x f(x) \, dx \] ### Step 2: Use the Property of Definite Integrals We can use the property of definite integrals which states: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a+b-x) \, dx \] In our case, \( a = 1 \) and \( b = 2 \), so \( a + b = 3 \). Therefore, we can write: \[ I = \int_{1}^{2} x f(x) \, dx = \int_{1}^{2} (3 - x) f(3 - x) \, dx \] ### Step 3: Substitute the Given Condition Since we know \( f(3 - x) = f(x) \), we can replace \( f(3 - x) \) with \( f(x) \): \[ I = \int_{1}^{2} (3 - x) f(x) \, dx \] ### Step 4: Expand the Integral Now, we can expand the integral: \[ I = \int_{1}^{2} 3f(x) \, dx - \int_{1}^{2} x f(x) \, dx \] This gives us: \[ I = 3 \int_{1}^{2} f(x) \, dx - I \] ### Step 5: Solve for \( I \) Now we can add \( I \) to both sides: \[ I + I = 3 \int_{1}^{2} f(x) \, dx \] \[ 2I = 3 \int_{1}^{2} f(x) \, dx \] Dividing both sides by 2: \[ I = \frac{3}{2} \int_{1}^{2} f(x) \, dx \] ### Conclusion Thus, the value of the integral \( I \) is: \[ I = \frac{3}{2} \int_{1}^{2} f(x) \, dx \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) True and false|3 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (3) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

If f(x)=f(a+b-x), then int_(a)^(b) xf(x)dx is equal to

If (2a+2b-x)=f(x), then int_(2a)^(2b)xf(x)dx is equal to

If 2f(x) - 3 f(1//x) = x," then " int_(1)^(2) f(x) dx is equal to

if int_(0)^(1)f(x)dx=1 and f(2x)=2f(x) then 3int_(1)^(2)f(x)dx is equal to

A continous function f(x) is such that f(3x)=2f(x), AA x in R . If int_(0)^(1)f(x)dx=1, then int_(1)^(3)f(x)dx is equal to

If f(x)=f(2-x) then int_(0.5)^(1.5)xf(x)dx=

If int_(0)^(x)((t^(3)+t)dt)/((1+3t^(2)))=f(x) , then int_(0)^(1)f^(')(x) dx is equal to

If g(x)=(f(x)-f(-x))/2 defined over [-3,3] f(x)=2x^(2)-4x+1 , then int_(-3)^(3)g(x)dx is equal to

If f(x)=(x-1)/(x+1),f^2(x)=f(f(x)),........,f^(k+1) (x)=f(f^k(x)),k=1,2,3,...g(x)=f^1998(x), then int_(1/e)^1 g(x)dx is equal to

If f(x)=f(pi+e-x) and int_(e)^( pi)f(x)dx=(2)/(e+pi) then int_(e)^( pi)xf(x)dx is equal to

ML KHANNA-DEFINITE INTEGRAL-Problem set (4) (Multiple Choice Questions)
  1. The value of int(0)^(2pi) cos^(99) x dx is

    Text Solution

    |

  2. int(a)^(b) (f(x))/(f(x) +f(a+b-x))dx=

    Text Solution

    |

  3. int(1)^(5) (sqrt""x)/(sqrt""(6-x) + sqrt""x) dx=

    Text Solution

    |

  4. int(3)^(6) (sqrt""x)/(sqrt""(9-x) + sqrt""x) dx=

    Text Solution

    |

  5. If f(a+b-x)= f(x), then int(a)^(b) x f(x) dx is equal to

    Text Solution

    |

  6. If overset(b)underset(a)int (x^(n))/(x^(4)+(16-x)^(n))dx=6, then

    Text Solution

    |

  7. If f(3-x)= f(x), then int(1)^(2) xf(x) dx is equal to

    Text Solution

    |

  8. For any t in R and f be a continuous function Let I(1)= int(sin^(2)t...

    Text Solution

    |

  9. If f(x) is an integrable function in ((pi)/(6), (pi)/(3)) and I(1)= in...

    Text Solution

    |

  10. Let f be a positive function. Let I(1) int(1-k)^(k) x.f {x(1-x)} dx, I...

    Text Solution

    |

  11. If f(x)= (e^(x))/(1+e^(x)), I(1)= int(f(-a))^(f(a)) xg {x(1-x)}dx and ...

    Text Solution

    |

  12. The value of int(1//n)^((a n-1)//n) (sqrtx)/(sqrt(a-x) + sqrtx)dx is e...

    Text Solution

    |

  13. If [x] stands for the greatest integer function, the value of int(4)^(...

    Text Solution

    |

  14. int(pi//4)^(3pi//4) (dx)/(1+ cos x) is equal to

    Text Solution

    |

  15. int(-pi//2)^(pi//2) (cos x dx)/(1+ e^(x))=

    Text Solution

    |

  16. int(0)^(pi) (dx)/(1+2^(tan x))=

    Text Solution

    |

  17. int(-pi//2)^(pi//2) (pi^(sin x))/(1+ pi^(sin x))dx=

    Text Solution

    |

  18. The value of int(-pi//2)^(pi//2) (dx)/(e^(sin x) +1) is equal to

    Text Solution

    |

  19. int(0)^(pi) (dx)/(1+ 4^(cos x))=

    Text Solution

    |

  20. The value of the integral int(-pi)^(pi)(cos^(2)x)/(1+a^(x))"dx", where...

    Text Solution

    |