Home
Class 12
MATHS
For any t in R and f be a continuous fun...

For any `t in R` and f be a continuous function
Let `I_(1)= int_(sin^(2)t)^(1+cos^(2) t) x f(x(2-x)) dx and I_(2)= int_(sin^(2)t)^(1+cos^(2)t) f(x(2-x)) dx` then `(I_(1))/(I_(2))` is

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the ratio \( \frac{I_1}{I_2} \) where: \[ I_1 = \int_{\sin^2 t}^{1 + \cos^2 t} x \cdot f(x(2-x)) \, dx \] \[ I_2 = \int_{\sin^2 t}^{1 + \cos^2 t} f(x(2-x)) \, dx \] ### Step 1: Use the property of definite integrals We will use the property of definite integrals which states that: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \] In our case, we can apply this property to \( I_1 \). ### Step 2: Determine the limits of integration First, we need to find the sum of the limits of integration: \[ \text{Sum of limits} = \sin^2 t + (1 + \cos^2 t) = \sin^2 t + 1 + \cos^2 t = 2 \] ### Step 3: Rewrite \( I_1 \) Using the property mentioned earlier, we can rewrite \( I_1 \): \[ I_1 = \int_{\sin^2 t}^{1 + \cos^2 t} x \cdot f(x(2-x)) \, dx = \int_{\sin^2 t}^{1 + \cos^2 t} (2 - x) \cdot f((2-x)x) \, dx \] ### Step 4: Combine the integrals Now, we can express \( I_1 \) in terms of \( I_2 \): \[ I_1 = \int_{\sin^2 t}^{1 + \cos^2 t} (2 \cdot f(x(2-x)) - x \cdot f(x(2-x))) \, dx \] This can be split into two integrals: \[ I_1 = 2 \int_{\sin^2 t}^{1 + \cos^2 t} f(x(2-x)) \, dx - \int_{\sin^2 t}^{1 + \cos^2 t} x \cdot f(x(2-x)) \, dx \] ### Step 5: Relate \( I_1 \) and \( I_2 \) Notice that the second integral on the right side is actually \( I_1 \): \[ I_1 = 2I_2 - I_1 \] ### Step 6: Solve for \( I_1 \) Rearranging gives: \[ 2I_1 = 2I_2 \] Dividing both sides by 2: \[ I_1 = I_2 \] ### Step 7: Find the ratio \( \frac{I_1}{I_2} \) Now, we can find the ratio: \[ \frac{I_1}{I_2} = \frac{I_2}{I_2} = 1 \] Thus, the final answer is: \[ \frac{I_1}{I_2} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) True and false|3 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (3) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

For x in R and a continuous function f(x) , let I_(1)int_(sin^(2)t)^(1+cos^(2)t) xf{x(2-x)} dx and I_(2) I_(1)int_(sin^(2)t)^(1+cos^(2)t) f(x(2-x))dx. Then, (I_(1))/(I_(2)) =

For x epsilonR , and a continuous function f let I_(1)=int_(sin^(2)t)^(1+cos^(2)t)xf{x(2-x)}dx and I_(2)=int_(sin^(2)t)^(1+cos^(2)t)f{x(2-x)}dx . Then (I_(1))/(I_(2)) is

For any x in R, and f be a continuous function Let I_(1) = int _(sin ^(2)x )^(1-cos ^(2)x) tf t (2-t)dt, I_(2) = int _(sin ^(2)x ) ^(1+cos ^(2)x) f (t(2-t))dt, then I_(1)=

For any tinR and f be a continuous function, let I_1 = int _(sin^2t)^(1+cos^2t) x*f(x(2-x))dx and I_2 =int_(sin^2t)^(1+cos^2t) f(x(2-x))dx. Then I_1/I_2is (i)0 (ii)1 (iii)2 (iv)3

For x in R and a continuous function f, let I_1=int_(s in^2t)^(1+cos^2t)xf{x(2-x)}dxa n dI_2=int_(sin^2t)^(1+cos^2)xf{x(2-x)}dxdotT h e n(I_1)/(I_2) is -1 (b) 1 (c) 2 (d) 3

If I_(1)=int_(3pi)^(0) f(cos^(2)x)dx and I_(2)=int_(pi)^(0) f(cos^(2)x) then

If I_(1)=int_(0)^( pi)xf(sin^(3)x+cos^(2)x)dx and I_(2)=int_(0)^((pi)/(2))f(sin^(3)x+cos^(2)x)dx, then relate I_(1) and I_(2)

ML KHANNA-DEFINITE INTEGRAL-Problem set (4) (Multiple Choice Questions)
  1. The value of int(0)^(2pi) cos^(99) x dx is

    Text Solution

    |

  2. int(a)^(b) (f(x))/(f(x) +f(a+b-x))dx=

    Text Solution

    |

  3. int(1)^(5) (sqrt""x)/(sqrt""(6-x) + sqrt""x) dx=

    Text Solution

    |

  4. int(3)^(6) (sqrt""x)/(sqrt""(9-x) + sqrt""x) dx=

    Text Solution

    |

  5. If f(a+b-x)= f(x), then int(a)^(b) x f(x) dx is equal to

    Text Solution

    |

  6. If overset(b)underset(a)int (x^(n))/(x^(4)+(16-x)^(n))dx=6, then

    Text Solution

    |

  7. If f(3-x)= f(x), then int(1)^(2) xf(x) dx is equal to

    Text Solution

    |

  8. For any t in R and f be a continuous function Let I(1)= int(sin^(2)t...

    Text Solution

    |

  9. If f(x) is an integrable function in ((pi)/(6), (pi)/(3)) and I(1)= in...

    Text Solution

    |

  10. Let f be a positive function. Let I(1) int(1-k)^(k) x.f {x(1-x)} dx, I...

    Text Solution

    |

  11. If f(x)= (e^(x))/(1+e^(x)), I(1)= int(f(-a))^(f(a)) xg {x(1-x)}dx and ...

    Text Solution

    |

  12. The value of int(1//n)^((a n-1)//n) (sqrtx)/(sqrt(a-x) + sqrtx)dx is e...

    Text Solution

    |

  13. If [x] stands for the greatest integer function, the value of int(4)^(...

    Text Solution

    |

  14. int(pi//4)^(3pi//4) (dx)/(1+ cos x) is equal to

    Text Solution

    |

  15. int(-pi//2)^(pi//2) (cos x dx)/(1+ e^(x))=

    Text Solution

    |

  16. int(0)^(pi) (dx)/(1+2^(tan x))=

    Text Solution

    |

  17. int(-pi//2)^(pi//2) (pi^(sin x))/(1+ pi^(sin x))dx=

    Text Solution

    |

  18. The value of int(-pi//2)^(pi//2) (dx)/(e^(sin x) +1) is equal to

    Text Solution

    |

  19. int(0)^(pi) (dx)/(1+ 4^(cos x))=

    Text Solution

    |

  20. The value of the integral int(-pi)^(pi)(cos^(2)x)/(1+a^(x))"dx", where...

    Text Solution

    |