Home
Class 12
MATHS
Let f be a positive function. Let I(1) i...

Let f be a positive function. Let `I_(1) int_(1-k)^(k) x.f {x(1-x)} dx, I_(2)= int_(1-k)^(k) f{x(1-x)}dx` where `2k-1 gt 0`, then `I_(1)//I_(2)` is

A

2

B

k

C

`1//2`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the ratios of the integrals \( I_1 \) and \( I_2 \) defined as follows: \[ I_1 = \int_{1-k}^{k} x f(x)(1-x) \, dx \] \[ I_2 = \int_{1-k}^{k} f(x)(1-x) \, dx \] where \( 2k - 1 > 0 \). ### Step 1: Change of Variable for \( I_1 \) We will use the property of definite integrals that states: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \] In our case, \( a = 1-k \) and \( b = k \), so \( a + b = (1-k) + k = 1 \). Thus, we can write: \[ I_1 = \int_{1-k}^{k} x f(x)(1-x) \, dx = \int_{1-k}^{k} (1-x) f(1-x)(x) \, dx \] ### Step 2: Rewrite \( I_1 \) Substituting \( 1-x \) for \( x \) in the integral: \[ I_1 = \int_{1-k}^{k} (1-x) f(1-x) x \, dx \] This gives us two expressions for \( I_1 \): 1. \( I_1 = \int_{1-k}^{k} x f(x)(1-x) \, dx \) 2. \( I_1 = \int_{1-k}^{k} (1-x) f(1-x) x \, dx \) ### Step 3: Combine the Integrals Adding both expressions for \( I_1 \): \[ 2I_1 = \int_{1-k}^{k} \left[ x f(x)(1-x) + (1-x) f(1-x) x \right] \, dx \] Factoring out \( x \): \[ 2I_1 = \int_{1-k}^{k} x \left[ f(x)(1-x) + f(1-x)(1-x) \right] \, dx \] ### Step 4: Relate \( I_1 \) and \( I_2 \) Now, we can express \( I_2 \): \[ I_2 = \int_{1-k}^{k} f(x)(1-x) \, dx \] Using the symmetry property, we can also express \( I_2 \) in terms of \( f(1-x) \): \[ I_2 = \int_{1-k}^{k} f(1-x)(1-x) \, dx \] ### Step 5: Establish the Ratio \( \frac{I_1}{I_2} \) From the earlier steps, we have: \[ 2I_1 = I_2 \implies I_1 = \frac{1}{2} I_2 \] Thus, the ratio \( \frac{I_1}{I_2} \) is: \[ \frac{I_1}{I_2} = \frac{1}{2} \] ### Final Answer The value of \( \frac{I_1}{I_2} \) is: \[ \frac{I_1}{I_2} = \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) True and false|3 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (3) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

Let f be a positive function.Let I_(1)=int_(1-k)^(k)xf([x(1-x)])dxI_(2)=int_(1-k)^(k)f[x(1-x)]dx, where 2k-1>0. Then (I_(1))/(I_(2))is 2(b) k(c)(1)/(2) (d) 1

Let f be a positive function.If I_(1)=int_(1-k)^(k)xf[x(1-x)]dx and I_(2)=int_(1-k)^(k)f[x(1-x)]backslash dx, where 2k-1>0. Then (I_(1))/(I_(2)) is

If I_(1)=int_(1-x)^(k) x sin{x(1-x)}dx and I_(2)=int_(1-x)^(k) sin{x(1-x)}dx , then

Let f be a function defined by f(x)=4^x/(4^x+2) I_1=int_(f(1-a))^(f(a)) xf{x(1-x)}dx and I_2=int_(f(1-a))^(f(a)) f{x(1-x)}dx where 2a-1gt0 then I_1:I_2 is (A) 2 (B) k (C) 1/2 (D) 1

Let I_(1)=int_(1)^(2)(1)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

If I_(1)=int_(3pi)^(0) f(cos^(2)x)dx and I_(2)=int_(pi)^(0) f(cos^(2)x) then

For x epsilonR , and a continuous function f let I_(1)=int_(sin^(2)t)^(1+cos^(2)t)xf{x(2-x)}dx and I_(2)=int_(sin^(2)t)^(1+cos^(2)t)f{x(2-x)}dx . Then (I_(1))/(I_(2)) is

Let I_(n) = int_(0)^(1//2)(1)/(sqrt(1-x^(n))) dx where n gt 2 , then

ML KHANNA-DEFINITE INTEGRAL-Problem set (4) (Multiple Choice Questions)
  1. The value of int(0)^(2pi) cos^(99) x dx is

    Text Solution

    |

  2. int(a)^(b) (f(x))/(f(x) +f(a+b-x))dx=

    Text Solution

    |

  3. int(1)^(5) (sqrt""x)/(sqrt""(6-x) + sqrt""x) dx=

    Text Solution

    |

  4. int(3)^(6) (sqrt""x)/(sqrt""(9-x) + sqrt""x) dx=

    Text Solution

    |

  5. If f(a+b-x)= f(x), then int(a)^(b) x f(x) dx is equal to

    Text Solution

    |

  6. If overset(b)underset(a)int (x^(n))/(x^(4)+(16-x)^(n))dx=6, then

    Text Solution

    |

  7. If f(3-x)= f(x), then int(1)^(2) xf(x) dx is equal to

    Text Solution

    |

  8. For any t in R and f be a continuous function Let I(1)= int(sin^(2)t...

    Text Solution

    |

  9. If f(x) is an integrable function in ((pi)/(6), (pi)/(3)) and I(1)= in...

    Text Solution

    |

  10. Let f be a positive function. Let I(1) int(1-k)^(k) x.f {x(1-x)} dx, I...

    Text Solution

    |

  11. If f(x)= (e^(x))/(1+e^(x)), I(1)= int(f(-a))^(f(a)) xg {x(1-x)}dx and ...

    Text Solution

    |

  12. The value of int(1//n)^((a n-1)//n) (sqrtx)/(sqrt(a-x) + sqrtx)dx is e...

    Text Solution

    |

  13. If [x] stands for the greatest integer function, the value of int(4)^(...

    Text Solution

    |

  14. int(pi//4)^(3pi//4) (dx)/(1+ cos x) is equal to

    Text Solution

    |

  15. int(-pi//2)^(pi//2) (cos x dx)/(1+ e^(x))=

    Text Solution

    |

  16. int(0)^(pi) (dx)/(1+2^(tan x))=

    Text Solution

    |

  17. int(-pi//2)^(pi//2) (pi^(sin x))/(1+ pi^(sin x))dx=

    Text Solution

    |

  18. The value of int(-pi//2)^(pi//2) (dx)/(e^(sin x) +1) is equal to

    Text Solution

    |

  19. int(0)^(pi) (dx)/(1+ 4^(cos x))=

    Text Solution

    |

  20. The value of the integral int(-pi)^(pi)(cos^(2)x)/(1+a^(x))"dx", where...

    Text Solution

    |