Home
Class 12
MATHS
If f(x)= (e^(x))/(1+e^(x)), I(1)= int(f(...

If `f(x)= (e^(x))/(1+e^(x)), I_(1)= int_(f(-a))^(f(a)) xg {x(1-x)}dx and I_(2)= int_(f(-a))^(f(a)) g {x(1-x)} dx`, then the value of `(I_(2))/(I_(1))` is

A

2

B

`-3`

C

`-1`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{I_2}{I_1} \) where: - \( I_1 = \int_{f(-a)}^{f(a)} x g(x(1-x)) \, dx \) - \( I_2 = \int_{f(-a)}^{f(a)} g(x(1-x)) \, dx \) Given the function \( f(x) = \frac{e^x}{1 + e^x} \), we first need to evaluate \( f(-a) \) and \( f(a) \). ### Step 1: Calculate \( f(-a) \) and \( f(a) \) 1. **Calculate \( f(a) \)**: \[ f(a) = \frac{e^a}{1 + e^a} \] 2. **Calculate \( f(-a) \)**: \[ f(-a) = \frac{e^{-a}}{1 + e^{-a}} = \frac{1}{e^a + 1} \] ### Step 2: Use the property of definite integrals We can use the property of definite integrals: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \] In our case, we replace \( x \) with \( f(a) + f(-a) - x \). ### Step 3: Evaluate \( I_1 \) Using the property on \( I_1 \): \[ I_1 = \int_{f(-a)}^{f(a)} x g(x(1-x)) \, dx \] Substituting \( x \) with \( f(a) + f(-a) - x \): \[ I_1 = \int_{f(-a)}^{f(a)} (f(a) + f(-a) - x) g(x(1-x)) \, dx \] ### Step 4: Simplify \( I_1 \) This can be expressed as: \[ I_1 = \int_{f(-a)}^{f(a)} (f(a) + f(-a)) g(x(1-x)) \, dx - I_1 \] Thus, \[ 2I_1 = (f(a) + f(-a)) \int_{f(-a)}^{f(a)} g(x(1-x)) \, dx \] This implies: \[ I_1 = \frac{(f(a) + f(-a))}{2} I_2 \] ### Step 5: Calculate \( \frac{I_2}{I_1} \) Now, we can find \( \frac{I_2}{I_1} \): \[ \frac{I_2}{I_1} = \frac{2}{f(a) + f(-a)} \] ### Step 6: Evaluate \( f(a) + f(-a) \) Calculating \( f(a) + f(-a) \): \[ f(a) + f(-a) = \frac{e^a}{1 + e^a} + \frac{1}{e^a + 1} = 1 \] ### Step 7: Final Calculation Thus, \[ \frac{I_2}{I_1} = \frac{2}{1} = 2 \] ### Conclusion The final value of \( \frac{I_2}{I_1} \) is \( 2 \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) True and false|3 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (3) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

f(x)=(e^(x))/(1+e^(x)),I_(1)=int(f(-a))^(f(a))xg(a(1-x)dx, and I_(2)=int_(f(-a))^(f(a))g(x(1-x))dx then the value of (I_(2))/(I_(1)) is (a)-1(b)-2(c)2(d)1g(x(1-x))dx

If f(x) =(e^(2))/(1+e^(x)),I_(1)=int_(f(-a))^(f(a)) xg{x(1-x)}dx and I_(2)=int_(f(-a))^(-f(-a)) g{x(1-x)}dx , where g is not identify function. Then the value of I_(2)//I_(1) , is

If f(x)=e^x/(1+e^x), I_1=int_(f(-a))^(f(a)) xg(x(1-x))dx and I_2=int_(f(-a))^(f(a)) g(x(1-x))dx , then I_2/I_1 = (A) -1 (B) -3 (C) 2 (D) 1

If I_(1)=int_(a)^(1-a)x.e^(x(1-x))dx and I_(2)=int_(a)^(1-a)e^(x(1-x))dx , then I_(1):I_(2) =

Let f be a function defined by f(x)=4^x/(4^x+2) I_1=int_(f(1-a))^(f(a)) xf{x(1-x)}dx and I_2=int_(f(1-a))^(f(a)) f{x(1-x)}dx where 2a-1gt0 then I_1:I_2 is (A) 2 (B) k (C) 1/2 (D) 1

Let f : R to R be continuous function such that f (x) + f (x+1) = 2, for all x in R. If I _(1) int_(0) ^(8) f (x) dx and I _(2) = int _(-1) ^(3) f (x) dx, then the value of I _(2) +2 I _(2) is equal to "________"

If I_(1)=int_(e)^(e^(2))(dx)/(ln x) and I_(2)=int_(1)^(2)(e^(x))/(x)dx

If I_(1)=int_(n)^(e^(2))(dx)/(lnx) and I_(2) = int_(1)^(2)(e^(x))/(x) dx_(1) then

For x epsilonR , and a continuous function f let I_(1)=int_(sin^(2)t)^(1+cos^(2)t)xf{x(2-x)}dx and I_(2)=int_(sin^(2)t)^(1+cos^(2)t)f{x(2-x)}dx . Then (I_(1))/(I_(2)) is

ML KHANNA-DEFINITE INTEGRAL-Problem set (4) (Multiple Choice Questions)
  1. The value of int(0)^(2pi) cos^(99) x dx is

    Text Solution

    |

  2. int(a)^(b) (f(x))/(f(x) +f(a+b-x))dx=

    Text Solution

    |

  3. int(1)^(5) (sqrt""x)/(sqrt""(6-x) + sqrt""x) dx=

    Text Solution

    |

  4. int(3)^(6) (sqrt""x)/(sqrt""(9-x) + sqrt""x) dx=

    Text Solution

    |

  5. If f(a+b-x)= f(x), then int(a)^(b) x f(x) dx is equal to

    Text Solution

    |

  6. If overset(b)underset(a)int (x^(n))/(x^(4)+(16-x)^(n))dx=6, then

    Text Solution

    |

  7. If f(3-x)= f(x), then int(1)^(2) xf(x) dx is equal to

    Text Solution

    |

  8. For any t in R and f be a continuous function Let I(1)= int(sin^(2)t...

    Text Solution

    |

  9. If f(x) is an integrable function in ((pi)/(6), (pi)/(3)) and I(1)= in...

    Text Solution

    |

  10. Let f be a positive function. Let I(1) int(1-k)^(k) x.f {x(1-x)} dx, I...

    Text Solution

    |

  11. If f(x)= (e^(x))/(1+e^(x)), I(1)= int(f(-a))^(f(a)) xg {x(1-x)}dx and ...

    Text Solution

    |

  12. The value of int(1//n)^((a n-1)//n) (sqrtx)/(sqrt(a-x) + sqrtx)dx is e...

    Text Solution

    |

  13. If [x] stands for the greatest integer function, the value of int(4)^(...

    Text Solution

    |

  14. int(pi//4)^(3pi//4) (dx)/(1+ cos x) is equal to

    Text Solution

    |

  15. int(-pi//2)^(pi//2) (cos x dx)/(1+ e^(x))=

    Text Solution

    |

  16. int(0)^(pi) (dx)/(1+2^(tan x))=

    Text Solution

    |

  17. int(-pi//2)^(pi//2) (pi^(sin x))/(1+ pi^(sin x))dx=

    Text Solution

    |

  18. The value of int(-pi//2)^(pi//2) (dx)/(e^(sin x) +1) is equal to

    Text Solution

    |

  19. int(0)^(pi) (dx)/(1+ 4^(cos x))=

    Text Solution

    |

  20. The value of the integral int(-pi)^(pi)(cos^(2)x)/(1+a^(x))"dx", where...

    Text Solution

    |