Home
Class 12
MATHS
If [x] stands for the greatest integer f...

If [x] stands for the greatest integer function, the value of `int_(4)^(10) ([x^(2)])/([x^(2)-28x +196]+[x^(2)])dx` is

A

0

B

1

C

3

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int_{4}^{10} \frac{[x^2]}{[x^2 - 28x + 196] + [x^2]} \, dx, \] where \([x]\) denotes the greatest integer function, we will follow these steps: ### Step 1: Simplify the Expression Inside the Integral First, we need to analyze the components of the integral. The expression \([x^2 - 28x + 196]\) can be rewritten as: \[ [x^2 - 28x + 196] = [ (x - 14)^2 ]. \] Since \((x - 14)^2\) is always non-negative, we can find the greatest integer value for different ranges of \(x\). ### Step 2: Evaluate the Greatest Integer Function For \(x\) in the range from 4 to 10, we can compute \([x^2]\) and \([(x - 14)^2]\): - When \(x = 4\), \(x^2 = 16\) and \([x^2] = 16\). - When \(x = 10\), \(x^2 = 100\) and \([x^2] = 100\). The values of \([x^2]\) will take integer values from 16 to 100 as \(x\) varies from 4 to 10. ### Step 3: Determine the Values of \([x^2 - 28x + 196]\) Next, we calculate \([x^2 - 28x + 196]\): \[ x^2 - 28x + 196 = (x - 14)^2. \] - At \(x = 4\), \((4 - 14)^2 = 100\) and \([100] = 100\). - At \(x = 10\), \((10 - 14)^2 = 16\) and \([16] = 16\). Thus, as \(x\) varies from 4 to 10, \([(x - 14)^2]\) will also take integer values from 16 to 100. ### Step 4: Combine the Results Now we can rewrite the integral: \[ \int_{4}^{10} \frac{[x^2]}{[(x - 14)^2] + [x^2]} \, dx. \] ### Step 5: Use the Symmetry Property of the Integral Using the property of definite integrals, we can express the integral as: \[ \int_{4}^{10} f(x) \, dx = \int_{4}^{10} f(14 - x) \, dx. \] This means we can evaluate the integral by substituting \(x\) with \(14 - x\) and adding the two integrals. ### Step 6: Calculate the Integral Adding the two integrals gives us: \[ 2I = \int_{4}^{10} \left( \frac{[x^2]}{[(x - 14)^2] + [x^2]} + \frac{[(14 - x)^2]}{[(14 - x - 14)^2] + [(14 - x)^2]} \right) \, dx. \] The symmetry will simplify the calculation, and ultimately we find: \[ I = 3. \] ### Final Answer Thus, the value of the integral is: \[ \boxed{3}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) True and false|3 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (3) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_((C))^(10)([x^(2)])/([x^(2)-28x+196]+[x^(2)])dx is (A)3(B)5

If [.] represents the greatest integer function, then int_(4)^(10)([x^(2)])/([x^(2)-28x+196]+[x^(2)])dx is equal to 0 (b) 1 (b) 3 (d) none of these

If (x) donotes the greates integer lex, then the value of int_(4)^(10)([x^(2)])/([x^(2)-28x+196]+[x^(2)]) dx is -

If [.] stands for the greatest integer function, then int_(1)^(2) [3x]dx is equal to

Let [.]denote the greatest integer function, then the value of int_(5)^(15) x[x^(2)]dx , is

If [:] denotes the greatest integer function, then find the value of int_(1)^(2)[3x]dx

If [.] represents the greatest integer function, then the value of |int_(0)^(sqrt((pi)/(2)))[[x^(2)]-cosx]dx| is "____________"

Consider f(x)={: {(x|x|,,x = 1):} Where [.] denotes the greatest integer function then the value of int_(-2)^(2)f(x)dx, is

If [*] denots the greatest integer function then the value of the integeral int_(-pi//2)^(pi//2)([(x)/(pi)]+0.5) dx , is

ML KHANNA-DEFINITE INTEGRAL-Problem set (4) (Multiple Choice Questions)
  1. The value of int(0)^(2pi) cos^(99) x dx is

    Text Solution

    |

  2. int(a)^(b) (f(x))/(f(x) +f(a+b-x))dx=

    Text Solution

    |

  3. int(1)^(5) (sqrt""x)/(sqrt""(6-x) + sqrt""x) dx=

    Text Solution

    |

  4. int(3)^(6) (sqrt""x)/(sqrt""(9-x) + sqrt""x) dx=

    Text Solution

    |

  5. If f(a+b-x)= f(x), then int(a)^(b) x f(x) dx is equal to

    Text Solution

    |

  6. If overset(b)underset(a)int (x^(n))/(x^(4)+(16-x)^(n))dx=6, then

    Text Solution

    |

  7. If f(3-x)= f(x), then int(1)^(2) xf(x) dx is equal to

    Text Solution

    |

  8. For any t in R and f be a continuous function Let I(1)= int(sin^(2)t...

    Text Solution

    |

  9. If f(x) is an integrable function in ((pi)/(6), (pi)/(3)) and I(1)= in...

    Text Solution

    |

  10. Let f be a positive function. Let I(1) int(1-k)^(k) x.f {x(1-x)} dx, I...

    Text Solution

    |

  11. If f(x)= (e^(x))/(1+e^(x)), I(1)= int(f(-a))^(f(a)) xg {x(1-x)}dx and ...

    Text Solution

    |

  12. The value of int(1//n)^((a n-1)//n) (sqrtx)/(sqrt(a-x) + sqrtx)dx is e...

    Text Solution

    |

  13. If [x] stands for the greatest integer function, the value of int(4)^(...

    Text Solution

    |

  14. int(pi//4)^(3pi//4) (dx)/(1+ cos x) is equal to

    Text Solution

    |

  15. int(-pi//2)^(pi//2) (cos x dx)/(1+ e^(x))=

    Text Solution

    |

  16. int(0)^(pi) (dx)/(1+2^(tan x))=

    Text Solution

    |

  17. int(-pi//2)^(pi//2) (pi^(sin x))/(1+ pi^(sin x))dx=

    Text Solution

    |

  18. The value of int(-pi//2)^(pi//2) (dx)/(e^(sin x) +1) is equal to

    Text Solution

    |

  19. int(0)^(pi) (dx)/(1+ 4^(cos x))=

    Text Solution

    |

  20. The value of the integral int(-pi)^(pi)(cos^(2)x)/(1+a^(x))"dx", where...

    Text Solution

    |