Home
Class 12
MATHS
int(-pi//2)^(pi//2) (cos x dx)/(1+ e^(x)...

`int_(-pi//2)^(pi//2) (cos x dx)/(1+ e^(x))=`

A

1

B

2

C

log 2

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x}{1 + e^x} \, dx, \] we will use a property of definite integrals. ### Step 1: Define the integral Let \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x}{1 + e^x} \, dx. \] ### Step 2: Use the property of definite integrals We can use the property of definite integrals that states: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx. \] In our case, \( a = -\frac{\pi}{2} \) and \( b = \frac{\pi}{2} \), so \( a + b = 0 \). Thus, we have: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos(-x)}{1 + e^{-x}} \, dx. \] ### Step 3: Simplify the integral Since \( \cos(-x) = \cos x \), we can rewrite the integral as: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x}{1 + e^{-x}} \, dx. \] Now, we can rewrite the denominator: \[ 1 + e^{-x} = \frac{e^x + 1}{e^x}. \] Thus, we have: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x \cdot e^x}{e^x + 1} \, dx. \] ### Step 4: Add the two expressions for I Now we have two expressions for \( I \): 1. \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x}{1 + e^x} \, dx \) 2. \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x \cdot e^x}{e^x + 1} \, dx \) Adding these two equations gives: \[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \frac{\cos x}{1 + e^x} + \frac{\cos x \cdot e^x}{e^x + 1} \right) dx. \] ### Step 5: Combine the integrands The integrands can be combined: \[ \frac{\cos x}{1 + e^x} + \frac{\cos x \cdot e^x}{e^x + 1} = \frac{\cos x (1 + e^x)}{1 + e^x} = \cos x. \] Thus, we have: \[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x \, dx. \] ### Step 6: Evaluate the integral Now, we can evaluate the integral: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x \, dx = [\sin x]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \sin\left(\frac{\pi}{2}\right) - \sin\left(-\frac{\pi}{2}\right) = 1 - (-1) = 2. \] Thus, \[ 2I = 2 \implies I = 1. \] ### Final Answer The value of the integral is \[ \boxed{1}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) True and false|3 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (3) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(-pi//2)^(pi//2) (cos x)/(1+e^(x))dx=

The value of int_(-pi//2)^(pi//2) (x^(2)cos x )/(1+e^(x)) dx is equal to

int_(-pi//2)^(pi//2)cos^(6)x dx=

Evaluate : int_(-pi/2)^( pi/2)(cos x)/(1+e^(x))dx

Evaluate of each of the following integral: int_(-pi//2)^(pi//2)(cos^2x)/(1+e^x)dx

int_((-pi)/(2))^((pi)/(2))((cos x)/(1-e^(x)))dx=

Evaluate : int_(-(pi)/(2))^((pi)/(2))(cos x)/(1+e^(x))dx

The value of int_(- pi//2) ^(pi//2) ( cos^2 x)/( 1+3^x ) dx is

int_(-pi/2)^(pi/2) (cos^2x)/(1+3^x)dx

ML KHANNA-DEFINITE INTEGRAL-Problem set (4) (Multiple Choice Questions)
  1. The value of int(0)^(2pi) cos^(99) x dx is

    Text Solution

    |

  2. int(a)^(b) (f(x))/(f(x) +f(a+b-x))dx=

    Text Solution

    |

  3. int(1)^(5) (sqrt""x)/(sqrt""(6-x) + sqrt""x) dx=

    Text Solution

    |

  4. int(3)^(6) (sqrt""x)/(sqrt""(9-x) + sqrt""x) dx=

    Text Solution

    |

  5. If f(a+b-x)= f(x), then int(a)^(b) x f(x) dx is equal to

    Text Solution

    |

  6. If overset(b)underset(a)int (x^(n))/(x^(4)+(16-x)^(n))dx=6, then

    Text Solution

    |

  7. If f(3-x)= f(x), then int(1)^(2) xf(x) dx is equal to

    Text Solution

    |

  8. For any t in R and f be a continuous function Let I(1)= int(sin^(2)t...

    Text Solution

    |

  9. If f(x) is an integrable function in ((pi)/(6), (pi)/(3)) and I(1)= in...

    Text Solution

    |

  10. Let f be a positive function. Let I(1) int(1-k)^(k) x.f {x(1-x)} dx, I...

    Text Solution

    |

  11. If f(x)= (e^(x))/(1+e^(x)), I(1)= int(f(-a))^(f(a)) xg {x(1-x)}dx and ...

    Text Solution

    |

  12. The value of int(1//n)^((a n-1)//n) (sqrtx)/(sqrt(a-x) + sqrtx)dx is e...

    Text Solution

    |

  13. If [x] stands for the greatest integer function, the value of int(4)^(...

    Text Solution

    |

  14. int(pi//4)^(3pi//4) (dx)/(1+ cos x) is equal to

    Text Solution

    |

  15. int(-pi//2)^(pi//2) (cos x dx)/(1+ e^(x))=

    Text Solution

    |

  16. int(0)^(pi) (dx)/(1+2^(tan x))=

    Text Solution

    |

  17. int(-pi//2)^(pi//2) (pi^(sin x))/(1+ pi^(sin x))dx=

    Text Solution

    |

  18. The value of int(-pi//2)^(pi//2) (dx)/(e^(sin x) +1) is equal to

    Text Solution

    |

  19. int(0)^(pi) (dx)/(1+ 4^(cos x))=

    Text Solution

    |

  20. The value of the integral int(-pi)^(pi)(cos^(2)x)/(1+a^(x))"dx", where...

    Text Solution

    |