Home
Class 12
MATHS
int(-pi//2)^(pi//2) (pi^(sin x))/(1+ pi^...

`int_(-pi//2)^(pi//2) (pi^(sin x))/(1+ pi^(sin x))dx`=

A

0

B

`pi//4`

C

`pi//2`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\pi^{\sin x}}{1 + \pi^{\sin x}} \, dx, \] we can utilize a property of definite integrals. This property states that: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx. \] ### Step 1: Define the Integral Let \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\pi^{\sin x}}{1 + \pi^{\sin x}} \, dx. \] ### Step 2: Apply the Property We will apply the property mentioned above. Here, \( a = -\frac{\pi}{2} \) and \( b = \frac{\pi}{2} \), so \( a + b = 0 \). Thus, we can replace \( x \) with \( -x \): \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\pi^{\sin(-x)}}{1 + \pi^{\sin(-x)}} \, dx. \] ### Step 3: Simplify the Expression Using the property of sine, we have \( \sin(-x) = -\sin x \). Therefore, we can rewrite the integral as: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\pi^{-\sin x}}{1 + \pi^{-\sin x}} \, dx. \] ### Step 4: Rewrite the Integral Now, we can simplify \( \frac{\pi^{-\sin x}}{1 + \pi^{-\sin x}} \): \[ \frac{\pi^{-\sin x}}{1 + \pi^{-\sin x}} = \frac{1}{\pi^{\sin x}} \cdot \frac{1}{1 + \frac{1}{\pi^{\sin x}}} = \frac{1}{\pi^{\sin x} + 1}. \] Thus, we have: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{\pi^{\sin x} + 1} \, dx. \] ### Step 5: Combine the Two Integrals Now we have two expressions for \( I \): 1. \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\pi^{\sin x}}{1 + \pi^{\sin x}} \, dx \) 2. \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{\pi^{\sin x} + 1} \, dx \) Adding these two expressions together: \[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \frac{\pi^{\sin x}}{1 + \pi^{\sin x}} + \frac{1}{\pi^{\sin x} + 1} \right) \, dx. \] ### Step 6: Simplify the Sum Notice that: \[ \frac{\pi^{\sin x}}{1 + \pi^{\sin x}} + \frac{1}{\pi^{\sin x} + 1} = 1. \] Thus, we have: \[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 \, dx. \] ### Step 7: Evaluate the Integral The integral of 1 from \( -\frac{\pi}{2} \) to \( \frac{\pi}{2} \) is simply the length of the interval: \[ 2I = \left[ x \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{\pi}{2} - \left(-\frac{\pi}{2}\right) = \pi. \] ### Step 8: Solve for \( I \) Now, divide both sides by 2: \[ I = \frac{\pi}{2}. \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{\pi}{2}. \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) True and false|3 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (3) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(-pi//2)^(pi//2)sin (|x|)dx=

The value of int_(-pi/2)^(pi/2) ((1+sin^(2)x)/(1 +pi^(sinx))) dx is

int_(-pi//2)^(pi//2)sin^(7)x dx=

int_(-pi/2)^(pi/2) sin^(2) x dx

int_(-pi/2)^(pi/2) sin^(7) x dx

int_(-pi/2)^(pi/2)(1+sin^2x)/(1+pi^(sinx))dx=

int_(-pi/2)^(pi/2)sin^(9) x dx

int_(-pi//4)^(pi//4)sin^(2)x dx=

int_(-pi//2)^(pi//2)(sin^(2n-1)x)/(1+cos^(2n)x)dx=

ML KHANNA-DEFINITE INTEGRAL-Problem set (4) (Multiple Choice Questions)
  1. The value of int(0)^(2pi) cos^(99) x dx is

    Text Solution

    |

  2. int(a)^(b) (f(x))/(f(x) +f(a+b-x))dx=

    Text Solution

    |

  3. int(1)^(5) (sqrt""x)/(sqrt""(6-x) + sqrt""x) dx=

    Text Solution

    |

  4. int(3)^(6) (sqrt""x)/(sqrt""(9-x) + sqrt""x) dx=

    Text Solution

    |

  5. If f(a+b-x)= f(x), then int(a)^(b) x f(x) dx is equal to

    Text Solution

    |

  6. If overset(b)underset(a)int (x^(n))/(x^(4)+(16-x)^(n))dx=6, then

    Text Solution

    |

  7. If f(3-x)= f(x), then int(1)^(2) xf(x) dx is equal to

    Text Solution

    |

  8. For any t in R and f be a continuous function Let I(1)= int(sin^(2)t...

    Text Solution

    |

  9. If f(x) is an integrable function in ((pi)/(6), (pi)/(3)) and I(1)= in...

    Text Solution

    |

  10. Let f be a positive function. Let I(1) int(1-k)^(k) x.f {x(1-x)} dx, I...

    Text Solution

    |

  11. If f(x)= (e^(x))/(1+e^(x)), I(1)= int(f(-a))^(f(a)) xg {x(1-x)}dx and ...

    Text Solution

    |

  12. The value of int(1//n)^((a n-1)//n) (sqrtx)/(sqrt(a-x) + sqrtx)dx is e...

    Text Solution

    |

  13. If [x] stands for the greatest integer function, the value of int(4)^(...

    Text Solution

    |

  14. int(pi//4)^(3pi//4) (dx)/(1+ cos x) is equal to

    Text Solution

    |

  15. int(-pi//2)^(pi//2) (cos x dx)/(1+ e^(x))=

    Text Solution

    |

  16. int(0)^(pi) (dx)/(1+2^(tan x))=

    Text Solution

    |

  17. int(-pi//2)^(pi//2) (pi^(sin x))/(1+ pi^(sin x))dx=

    Text Solution

    |

  18. The value of int(-pi//2)^(pi//2) (dx)/(e^(sin x) +1) is equal to

    Text Solution

    |

  19. int(0)^(pi) (dx)/(1+ 4^(cos x))=

    Text Solution

    |

  20. The value of the integral int(-pi)^(pi)(cos^(2)x)/(1+a^(x))"dx", where...

    Text Solution

    |