Home
Class 12
MATHS
int(a)^(b) (sin (x-a) -cos (x-a))/(sin (...

`int_(a)^(b) (sin (x-a) -cos (x-a))/(sin (b-x)- cos (b-x)) dx = int_(a)^(b) (sin (b-x) -cos (b-x))/(sin (x-a) -cos (x-a))dx`
True or False?

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the given statement is true or false, we will evaluate both sides of the equation: \[ \int_{a}^{b} \frac{\sin(x-a) - \cos(x-a)}{\sin(b-x) - \cos(b-x)} \, dx = \int_{a}^{b} \frac{\sin(b-x) - \cos(b-x)}{\sin(x-a) - \cos(x-a)} \, dx \] ### Step 1: Consider the left-hand side Let: \[ I = \int_{a}^{b} \frac{\sin(x-a) - \cos(x-a)}{\sin(b-x) - \cos(b-x)} \, dx \] ### Step 2: Apply the property of definite integrals Using the property of definite integrals known as King's Rule, we can transform the integral. According to King's Rule: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a+b-x) \, dx \] Here, we set \( f(x) = \frac{\sin(x-a) - \cos(x-a)}{\sin(b-x) - \cos(b-x)} \). ### Step 3: Substitute \( x \) with \( a + b - x \) Now, we will substitute \( x \) with \( a + b - x \) in the integral: \[ I = \int_{a}^{b} \frac{\sin((a+b-x)-a) - \cos((a+b-x)-a)}{\sin(b-(a+b-x)) - \cos(b-(a+b-x))} \, dx \] This simplifies to: \[ I = \int_{a}^{b} \frac{\sin(b-x) - \cos(b-x)}{\sin(x-a) - \cos(x-a)} \, dx \] ### Step 4: Compare with the right-hand side Now we have: \[ I = \int_{a}^{b} \frac{\sin(b-x) - \cos(b-x)}{\sin(x-a) - \cos(x-a)} \, dx \] This shows that the left-hand side is equal to the right-hand side. ### Conclusion Since both sides of the equation are equal, we conclude that the statement is **True**.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem set (5) (Multiple Choice Questions)|69 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem set (4) (Multiple Choice Questions)|22 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int(sin(x+a))/(cos(x-b))dx=

int(sin(x-a)dx)/cos(x-b)

int (sin (x-a))/(cos (x+b))ax

int(cos(x-a))/(sin(x+b))dx

int_(0)^(pi//2)(a sin x + b cos x)/(sin x + cos x) dx=

int(dx)/(a sin x+b cos x)

int(dx)/(a sin x+b cos x)

int(1)/(sin(x-a)cos(x-b))dx is equal to

int (cos(x+a))/(sin(x+b))dx