Home
Class 12
MATHS
lim(n rarr oo) [(1)/(n+1) + (1)/(n+2) +...

`lim_(n rarr oo) [(1)/(n+1) + (1)/(n+2) + …+ (1)/(6n)]`=

A

log 4

B

log 6

C

log 2

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \left( \frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{6n} \right), \] we can express the sum in a more manageable form. ### Step 1: Rewrite the sum The sum can be rewritten as: \[ \sum_{r=1}^{5n} \frac{1}{n+r}. \] This is because the terms range from \(n+1\) to \(6n\), which corresponds to \(r\) going from \(1\) to \(5n\). ### Step 2: Factor out \(n\) from the denominator We can factor \(n\) out of the denominator: \[ \sum_{r=1}^{5n} \frac{1}{n+r} = \sum_{r=1}^{5n} \frac{1}{n(1 + \frac{r}{n})} = \frac{1}{n} \sum_{r=1}^{5n} \frac{1}{1 + \frac{r}{n}}. \] ### Step 3: Convert the sum to an integral As \(n\) approaches infinity, the sum can be approximated by an integral. We can express the sum as a Riemann sum: \[ \frac{1}{n} \sum_{r=1}^{5n} \frac{1}{1 + \frac{r}{n}} \approx \int_{0}^{5} \frac{1}{1+x} \, dx, \] where we have made the substitution \(x = \frac{r}{n}\). ### Step 4: Determine the limits of integration The lower limit corresponds to \(r=1\) which gives \(x = \frac{1}{n} \to 0\) as \(n \to \infty\), and the upper limit corresponds to \(r=5n\) which gives \(x = 5\). ### Step 5: Evaluate the integral Now we evaluate the integral: \[ \int_{0}^{5} \frac{1}{1+x} \, dx. \] The integral of \(\frac{1}{1+x}\) is \(\log(1+x)\), so we compute: \[ \left[ \log(1+x) \right]_{0}^{5} = \log(6) - \log(1) = \log(6). \] ### Step 6: Conclude the limit Thus, we find that: \[ \lim_{n \to \infty} \left( \frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{6n} \right) = \log(6). \] Therefore, the final answer is: \[ \boxed{\log(6)}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

lim_ (n rarr oo) (1) / (1 + x ^ (n))

lim_ (n rarr oo) ((1) / (n + 1) + (1) / (n + 2) + (1) / (n + 3) + ...... + (1) / (6n ))

lim_(n rarr oo)tan^-1n/n

lim_ (n rarr oo) (x ^ (n)) / (n!)

lim_(n rarr oo)(1-(2)/(n))^(n)

lim_(n rarr oo)(1+(x)/(n))^(n)

lim_ (n rarr oo) (n) / ((n!) ^ ((1) / (n)))

lim_(n rarr oo)((-1)^(n)n)/(n+1)

ML KHANNA-DEFINITE INTEGRAL-Problem Set (6) Multiple choice Questions
  1. lim(n rarr oo) [(1)/(n+1) + (1)/(n+2) + (1)/(n+3) + …+ (1)/(2n)]=

    Text Solution

    |

  2. lim(n rarr oo) [(1)/(n+1) + (1)/(n+2) + …+ (1)/(6n)]=

    Text Solution

    |

  3. lim(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

    Text Solution

    |

  4. lim(n rarr oo) [(1)/(sqrt""(n^(2)-1)) + (1)/(sqrt""(n^(2) - 2^(2)))+ …...

    Text Solution

    |

  5. The value of lim(n to oo)sum(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

    Text Solution

    |

  6. The value of lim(n to oo)[(n)/(n^(2))+(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(...

    Text Solution

    |

  7. lim(n to oo)((1)/(1+n^(3))+(4)/(8+n^(3))+....+(r^(2))/(r^(3)+n^(3))+.....

    Text Solution

    |

  8. underset(n to oo)"lim"underset(r=1)overset(n)sum((r^(3))/(r^(4) + n^(4...

    Text Solution

    |

  9. underset(nrarroo)lim[(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+....

    Text Solution

    |

  10. v20.1

    Text Solution

    |

  11. Evaluate: (lim)(nvecoo)([(n+1)(n+2)(n+n)^(1/n))/n

    Text Solution

    |

  12. The value of lim(n rarr oo) [((2n)!)/(n!n^(n))]^(1//n) is equal to

    Text Solution

    |

  13. Lim(n rarr oo)[(1)/(1-n^(2))+(2)/(1-n^(2))+.....+(n)/(1-n^(2))] is equ...

    Text Solution

    |

  14. lim(n rarr oo) (1)/(n) ["tan"(pi)/(4n) + "tan"(2pi)/(4n) + …+ "tan"(n ...

    Text Solution

    |

  15. The value of lim(nrarroo)(1)/(n)[sec^(2)""(pi)/(4n)+sec^(2)""(2pi)/(4n...

    Text Solution

    |

  16. Evaluate: ("lim")(nvecoo)[1/(n^2)sec^2 1/(n^2)+2//n^2sec^2 4/(n^2)++1/...

    Text Solution

    |

  17. lim(n rarr oo) (1^(99) + 2^(99) + …+ n^(99))/(n^(100))=

    Text Solution

    |

  18. Lt(nrarroo) (1+2^4+3^4+ … +n^4)/n^5-Lt(nrarroo) (1+2^3+3^3 + … +n^3)/n...

    Text Solution

    |

  19. Lt(nrarroo) (1+2^4+3^4+ … +n^4)/n^5-Lt(nrarroo) (1+2^3+3^3 + … +n^3)/n...

    Text Solution

    |

  20. Lt(n rarr oo) (2^(k) + 4^(k) + 6^(k) + …+ (2n)^(k))/(n^(k+1)) , k ne -...

    Text Solution

    |