Home
Class 12
MATHS
lim(n rarr oo) [(1)/(sqrt""(n^(2)-1)) + ...

`lim_(n rarr oo) [(1)/(sqrt""(n^(2)-1)) + (1)/(sqrt""(n^(2) - 2^(2)))+ ….+ (1)/sqrt(([n^(2)- (n-1)^(2)]))]`= ….

A

0

B

`(pi)/(2)`

C

`pi`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \left[ \frac{1}{\sqrt{n^2 - 1}} + \frac{1}{\sqrt{n^2 - 2^2}} + \ldots + \frac{1}{\sqrt{n^2 - (n-1)^2}} \right], \] we can break down the solution step by step. ### Step 1: Rewrite the expression We can express the limit as a summation: \[ \lim_{n \to \infty} \sum_{k=1}^{n-1} \frac{1}{\sqrt{n^2 - k^2}}. \] ### Step 2: Factor out \(n^2\) from the square root Notice that we can factor \(n^2\) out of the square root: \[ \sqrt{n^2 - k^2} = \sqrt{n^2(1 - \frac{k^2}{n^2})} = n\sqrt{1 - \frac{k^2}{n^2}}. \] Thus, we can rewrite the summation: \[ \sum_{k=1}^{n-1} \frac{1}{\sqrt{n^2 - k^2}} = \sum_{k=1}^{n-1} \frac{1}{n\sqrt{1 - \frac{k^2}{n^2}}}. \] ### Step 3: Change the summation to a Riemann sum Now we can factor out \( \frac{1}{n} \): \[ \frac{1}{n} \sum_{k=1}^{n-1} \frac{1}{\sqrt{1 - \frac{k^2}{n^2}}}. \] As \(n \to \infty\), the term \(\frac{k}{n}\) approaches a continuous variable \(x\) where \(x = \frac{k}{n}\). The summation can be approximated by an integral: \[ \frac{1}{n} \sum_{k=1}^{n-1} \frac{1}{\sqrt{1 - \left(\frac{k}{n}\right)^2}} \approx \int_0^1 \frac{1}{\sqrt{1 - x^2}} \, dx. \] ### Step 4: Evaluate the integral The integral \[ \int_0^1 \frac{1}{\sqrt{1 - x^2}} \, dx \] is known to equal \(\frac{\pi}{2}\). This is derived from the fact that the integral of \(\frac{1}{\sqrt{1 - x^2}}\) is \(\sin^{-1}(x)\). ### Step 5: Conclusion Thus, we find that: \[ \lim_{n \to \infty} \sum_{k=1}^{n-1} \frac{1}{\sqrt{n^2 - k^2}} = \frac{\pi}{2}. \] Therefore, the final answer is: \[ \boxed{\frac{\pi}{2}}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

Evaluate: lim_(n rarr oo)((1)/(sqrt(4n^(2)-1))+(1)/(sqrt(4n^(2)-2^(2)))+...+(1)/(sqrt(3n^(2))))

lim_(n rarr oo) sqrt(n)/sqrt(n+1)=

lim_(n rarr oo)(1+sqrt(n))/(1-sqrt(n))

lim_(nrarroo)((1)/(sqrt(n^(2)))+(1)/(sqrt(n^(2)-1^(2)))+(1)/(sqrt(n^(2)-2^(2)))+....+(1)/(sqrt(n^(2)-(n-1)^(2)))) is equal to

lim_(n rarr oo)[(1)/(sqrt(2n-1^(2)))+(1)/(sqrt(4n-2^(2)))+(1)/(sqrt(6n-) 3^(2)))+...+(1)/(n)]

lim_(n rarr oo)(1)/(sqrt(n^(2)))+(1)/(sqrt(n^(2)+1))+(1)/(sqrt(n^(2) +2))+...(.1)/(sqrt(n^(2)+2n))=

lim_(n rarr oo)(sqrt(n^(2)+n)-sqrt(n^2+1))

lim_(n rarr oo)(1)/(n^(3))(sqrt(n^(2)+1)+2sqrt(n^(2)+2^(2))+(-n)/(n sqrt((n^(2)+n^(2))))=

lim_(n rarr oo)(sqrt(n+1)-sqrt(n))=0

ML KHANNA-DEFINITE INTEGRAL-Problem Set (6) Multiple choice Questions
  1. lim(n rarr oo) [(1)/(n+1) + (1)/(n+2) + …+ (1)/(6n)]=

    Text Solution

    |

  2. lim(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

    Text Solution

    |

  3. lim(n rarr oo) [(1)/(sqrt""(n^(2)-1)) + (1)/(sqrt""(n^(2) - 2^(2)))+ …...

    Text Solution

    |

  4. The value of lim(n to oo)sum(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

    Text Solution

    |

  5. The value of lim(n to oo)[(n)/(n^(2))+(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(...

    Text Solution

    |

  6. lim(n to oo)((1)/(1+n^(3))+(4)/(8+n^(3))+....+(r^(2))/(r^(3)+n^(3))+.....

    Text Solution

    |

  7. underset(n to oo)"lim"underset(r=1)overset(n)sum((r^(3))/(r^(4) + n^(4...

    Text Solution

    |

  8. underset(nrarroo)lim[(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+....

    Text Solution

    |

  9. v20.1

    Text Solution

    |

  10. Evaluate: (lim)(nvecoo)([(n+1)(n+2)(n+n)^(1/n))/n

    Text Solution

    |

  11. The value of lim(n rarr oo) [((2n)!)/(n!n^(n))]^(1//n) is equal to

    Text Solution

    |

  12. Lim(n rarr oo)[(1)/(1-n^(2))+(2)/(1-n^(2))+.....+(n)/(1-n^(2))] is equ...

    Text Solution

    |

  13. lim(n rarr oo) (1)/(n) ["tan"(pi)/(4n) + "tan"(2pi)/(4n) + …+ "tan"(n ...

    Text Solution

    |

  14. The value of lim(nrarroo)(1)/(n)[sec^(2)""(pi)/(4n)+sec^(2)""(2pi)/(4n...

    Text Solution

    |

  15. Evaluate: ("lim")(nvecoo)[1/(n^2)sec^2 1/(n^2)+2//n^2sec^2 4/(n^2)++1/...

    Text Solution

    |

  16. lim(n rarr oo) (1^(99) + 2^(99) + …+ n^(99))/(n^(100))=

    Text Solution

    |

  17. Lt(nrarroo) (1+2^4+3^4+ … +n^4)/n^5-Lt(nrarroo) (1+2^3+3^3 + … +n^3)/n...

    Text Solution

    |

  18. Lt(nrarroo) (1+2^4+3^4+ … +n^4)/n^5-Lt(nrarroo) (1+2^3+3^3 + … +n^3)/n...

    Text Solution

    |

  19. Lt(n rarr oo) (2^(k) + 4^(k) + 6^(k) + …+ (2n)^(k))/(n^(k+1)) , k ne -...

    Text Solution

    |

  20. underset(n to oo)lim(1)/(2)" " underset(r=+1)overset(2n)sum (r)/(s...

    Text Solution

    |