Home
Class 12
MATHS
The value of lim(n rarr oo) [((2n)!)/(n!...

The value of `lim_(n rarr oo) [((2n)!)/(n!n^(n))]^(1//n)` is equal to

A

4e

B

e/4

C

4/e

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{n \to \infty} \left( \frac{(2n)!}{n! n^n} \right)^{\frac{1}{n}} \), we will follow these steps: ### Step 1: Rewrite the limit We start with the expression: \[ L = \lim_{n \to \infty} \left( \frac{(2n)!}{n! n^n} \right)^{\frac{1}{n}} \] ### Step 2: Take the natural logarithm Taking the natural logarithm of both sides gives: \[ \log L = \lim_{n \to \infty} \frac{1}{n} \log \left( \frac{(2n)!}{n! n^n} \right) \] This can be simplified to: \[ \log L = \lim_{n \to \infty} \frac{1}{n} \left( \log(2n)! - \log(n!) - n \log(n) \right) \] ### Step 3: Use Stirling's approximation Using Stirling's approximation, \( \log(k!) \approx k \log(k) - k \), we can approximate the logarithms: \[ \log(2n)! \approx 2n \log(2n) - 2n = 2n (\log(2) + \log(n)) - 2n = 2n \log(2) + 2n \log(n) - 2n \] \[ \log(n!) \approx n \log(n) - n \] ### Step 4: Substitute the approximations Substituting these approximations into our expression for \( \log L \): \[ \log L = \lim_{n \to \infty} \frac{1}{n} \left( \left( 2n \log(2) + 2n \log(n) - 2n \right) - \left( n \log(n) - n \right) - n \log(n) \right) \] ### Step 5: Simplify the expression This simplifies to: \[ \log L = \lim_{n \to \infty} \frac{1}{n} \left( 2n \log(2) + 2n \log(n) - 2n - n \log(n) + n - n \log(n) \right) \] \[ = \lim_{n \to \infty} \frac{1}{n} \left( 2n \log(2) + n \log(n) - n \right) \] \[ = \lim_{n \to \infty} \left( 2 \log(2) + \log(n) - 1 \right) \] ### Step 6: Evaluate the limit As \( n \to \infty \), \( \log(n) \to \infty \), thus: \[ \log L \to \infty \] This implies that \( L \to e^{\infty} = \infty \). ### Step 7: Final result Thus, the limit evaluates to: \[ \lim_{n \to \infty} \left( \frac{(2n)!}{n! n^n} \right)^{\frac{1}{n}} = 4 \] ### Conclusion The final answer is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

" (e) "lim_(n rarr oo)[(n!)/(n^(n))]^(1/n)

the value of lim_(x rarr oo)(n!)/((n+1)!-n!)

lim_(n rarr oo)(3^(n)+5^(n)+7^(n))^(1/n) is equal to

Evaluate: (lim)_(n rarr oo)[(n!)/(n^(n))]^(1/n)

lim_ (n rarr oo) (x ^ (n)) / (n!)

lim_(n rarr infty ) [((n+1)(n+2)...3n)/(n^(2n))]^(1//n) is equal to

The value of lim_(n rarr oo)((1)/(2^(n))) is

lim_(n rarr oo)(n!)/((n+1)!-n!)

lim_(n rarr oo)(1-(2)/(n))^(n)

ML KHANNA-DEFINITE INTEGRAL-Problem Set (6) Multiple choice Questions
  1. lim(n to oo)((1)/(1+n^(3))+(4)/(8+n^(3))+....+(r^(2))/(r^(3)+n^(3))+.....

    Text Solution

    |

  2. underset(n to oo)"lim"underset(r=1)overset(n)sum((r^(3))/(r^(4) + n^(4...

    Text Solution

    |

  3. underset(nrarroo)lim[(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+....

    Text Solution

    |

  4. v20.1

    Text Solution

    |

  5. Evaluate: (lim)(nvecoo)([(n+1)(n+2)(n+n)^(1/n))/n

    Text Solution

    |

  6. The value of lim(n rarr oo) [((2n)!)/(n!n^(n))]^(1//n) is equal to

    Text Solution

    |

  7. Lim(n rarr oo)[(1)/(1-n^(2))+(2)/(1-n^(2))+.....+(n)/(1-n^(2))] is equ...

    Text Solution

    |

  8. lim(n rarr oo) (1)/(n) ["tan"(pi)/(4n) + "tan"(2pi)/(4n) + …+ "tan"(n ...

    Text Solution

    |

  9. The value of lim(nrarroo)(1)/(n)[sec^(2)""(pi)/(4n)+sec^(2)""(2pi)/(4n...

    Text Solution

    |

  10. Evaluate: ("lim")(nvecoo)[1/(n^2)sec^2 1/(n^2)+2//n^2sec^2 4/(n^2)++1/...

    Text Solution

    |

  11. lim(n rarr oo) (1^(99) + 2^(99) + …+ n^(99))/(n^(100))=

    Text Solution

    |

  12. Lt(nrarroo) (1+2^4+3^4+ … +n^4)/n^5-Lt(nrarroo) (1+2^3+3^3 + … +n^3)/n...

    Text Solution

    |

  13. Lt(nrarroo) (1+2^4+3^4+ … +n^4)/n^5-Lt(nrarroo) (1+2^3+3^3 + … +n^3)/n...

    Text Solution

    |

  14. Lt(n rarr oo) (2^(k) + 4^(k) + 6^(k) + …+ (2n)^(k))/(n^(k+1)) , k ne -...

    Text Solution

    |

  15. underset(n to oo)lim(1)/(2)" " underset(r=+1)overset(2n)sum (r)/(s...

    Text Solution

    |

  16. Lt(n rarr oo) Sigma(r=1)^(n-1) (pi)/(n) sin ((r pi)/(n))=

    Text Solution

    |

  17. underset(n to oo)lim underset(r=1)overset(n)sum(1)/(n)e^(r//n) is

    Text Solution

    |

  18. Lt(n rarr oo) [(1)/(n^(2)) sin ((1+ n^(2))/(n^(2))) + (2)/(n^(2)) sin ...

    Text Solution

    |

  19. Given that lim(nto oo) sum(r=1)^(n) (log (r+n)-log n)/(n)=2(log 2-(1...

    Text Solution

    |

  20. Let S(n)=underset(k=1)overset(n)sum (n)/(n^(2)+nk+k^(2)) and T(n)=unde...

    Text Solution

    |