Home
Class 12
MATHS
lim(n rarr oo) (1^(99) + 2^(99) + …+ n^(...

`lim_(n rarr oo) (1^(99) + 2^(99) + …+ n^(99))/(n^(100))=`

A

`(99)/(100)`

B

`(1)/(100)`

C

`(1)/(99)`

D

`(1)/(101)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \frac{1^{99} + 2^{99} + \ldots + n^{99}}{n^{100}}, \] we can follow these steps: ### Step 1: Identify the Sum We need to analyze the numerator, which is the sum of the first \( n \) integers raised to the power of 99. This can be expressed as: \[ S_n = 1^{99} + 2^{99} + \ldots + n^{99}. \] ### Step 2: Use the Formula for the Sum of Powers There is a known formula for the sum of the first \( n \) integers raised to the \( k \)-th power: \[ S_n = \frac{n^{k+1}}{k+1} + O(n^k), \] where \( O(n^k) \) represents lower order terms. For \( k = 99 \), we have: \[ S_n = \frac{n^{100}}{100} + O(n^{99}). \] ### Step 3: Substitute into the Limit Now we substitute \( S_n \) back into our limit: \[ \lim_{n \to \infty} \frac{S_n}{n^{100}} = \lim_{n \to \infty} \frac{\frac{n^{100}}{100} + O(n^{99})}{n^{100}}. \] ### Step 4: Simplify the Expression This simplifies to: \[ \lim_{n \to \infty} \left( \frac{1}{100} + \frac{O(n^{99})}{n^{100}} \right). \] ### Step 5: Analyze the Limit As \( n \to \infty \), the term \( \frac{O(n^{99})}{n^{100}} \) approaches 0, since the degree of the numerator is less than the degree of the denominator. Thus, we have: \[ \lim_{n \to \infty} \left( \frac{1}{100} + 0 \right) = \frac{1}{100}. \] ### Final Result Therefore, the limit is: \[ \lim_{n \to \infty} \frac{1^{99} + 2^{99} + \ldots + n^{99}}{n^{100}} = \frac{1}{100}. \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

lim_ (n rarr oo) (x ^ (n)) / (n!)

lim_(n rarr oo)(n^(2))/(2^(n))

lim_(n rarr oo)(1-(2)/(n))^(n)

lim_ (n rarr oo) (1 + 2 + 3 * -n) / (n ^ (2))

lim_(n rarr oo)((-1)^(n)n)/(n+1)

lim_(n rarr oo)(n+(-1)^(n))/(n)

lim_ (n rarr oo) (1 ^ (99) + 2 ^ (99) + 3 ^ (99) + ...... n ^ (99)) / (n ^ (100)) =

lim_(n rarr oo)(2^(3n))/(3^(2n))=

lim_(n rarr oo)tan^-1n/n

lim_ (n rarr oo) (2 ^ (n) -1) / (2 ^ (n) +1)

ML KHANNA-DEFINITE INTEGRAL-Problem Set (6) Multiple choice Questions
  1. lim(n to oo)((1)/(1+n^(3))+(4)/(8+n^(3))+....+(r^(2))/(r^(3)+n^(3))+.....

    Text Solution

    |

  2. underset(n to oo)"lim"underset(r=1)overset(n)sum((r^(3))/(r^(4) + n^(4...

    Text Solution

    |

  3. underset(nrarroo)lim[(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+....

    Text Solution

    |

  4. v20.1

    Text Solution

    |

  5. Evaluate: (lim)(nvecoo)([(n+1)(n+2)(n+n)^(1/n))/n

    Text Solution

    |

  6. The value of lim(n rarr oo) [((2n)!)/(n!n^(n))]^(1//n) is equal to

    Text Solution

    |

  7. Lim(n rarr oo)[(1)/(1-n^(2))+(2)/(1-n^(2))+.....+(n)/(1-n^(2))] is equ...

    Text Solution

    |

  8. lim(n rarr oo) (1)/(n) ["tan"(pi)/(4n) + "tan"(2pi)/(4n) + …+ "tan"(n ...

    Text Solution

    |

  9. The value of lim(nrarroo)(1)/(n)[sec^(2)""(pi)/(4n)+sec^(2)""(2pi)/(4n...

    Text Solution

    |

  10. Evaluate: ("lim")(nvecoo)[1/(n^2)sec^2 1/(n^2)+2//n^2sec^2 4/(n^2)++1/...

    Text Solution

    |

  11. lim(n rarr oo) (1^(99) + 2^(99) + …+ n^(99))/(n^(100))=

    Text Solution

    |

  12. Lt(nrarroo) (1+2^4+3^4+ … +n^4)/n^5-Lt(nrarroo) (1+2^3+3^3 + … +n^3)/n...

    Text Solution

    |

  13. Lt(nrarroo) (1+2^4+3^4+ … +n^4)/n^5-Lt(nrarroo) (1+2^3+3^3 + … +n^3)/n...

    Text Solution

    |

  14. Lt(n rarr oo) (2^(k) + 4^(k) + 6^(k) + …+ (2n)^(k))/(n^(k+1)) , k ne -...

    Text Solution

    |

  15. underset(n to oo)lim(1)/(2)" " underset(r=+1)overset(2n)sum (r)/(s...

    Text Solution

    |

  16. Lt(n rarr oo) Sigma(r=1)^(n-1) (pi)/(n) sin ((r pi)/(n))=

    Text Solution

    |

  17. underset(n to oo)lim underset(r=1)overset(n)sum(1)/(n)e^(r//n) is

    Text Solution

    |

  18. Lt(n rarr oo) [(1)/(n^(2)) sin ((1+ n^(2))/(n^(2))) + (2)/(n^(2)) sin ...

    Text Solution

    |

  19. Given that lim(nto oo) sum(r=1)^(n) (log (r+n)-log n)/(n)=2(log 2-(1...

    Text Solution

    |

  20. Let S(n)=underset(k=1)overset(n)sum (n)/(n^(2)+nk+k^(2)) and T(n)=unde...

    Text Solution

    |