Home
Class 12
MATHS
underset(n to oo)lim(1)/(2)" " under...

`underset(n to oo)lim(1)/(2)" " underset(r=+1)overset(2n)sum (r)/(sqrt(n^(2)+r^(2)))` equals

A

`1+ sqrt5`

B

`-1 + sqrt5`

C

`-1 + sqrt2`

D

`1+ sqrt2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

underset(r=1)overset(n)sum ( r )/(r^(4)+r^(2)+1) is equal to

underset(r=1)overset(n)(sum)r(.^(n)C_(r)-.^(n)C_(r-1)) is equal to

lim_(n to oo)(1)/(2)" " sum_(r=+1)^(2n) (r)/(sqrt(n^(2)+r^(2))) equals

The value of underset( n rarroo)(lim) underset(r=1)overset(r=4n)(sum)(sqrt(n))/(sqrt(r ) (3 sqrt(r)+4)sqrt(n)^(2)) is equal to

lim_(n rarr oo)(1)/(n)sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) equals

If k=underset(r=0)overset(n)(sum)(1)/(.^(n)C_(r)) , then underset(r=0)overset(n)(sum)(r)/(.^(n)C_(r)) is equal to

Use Sandwich theorem to evaluate : underset( n rarr oo) ( "Lim") underset(k=n^(2))overset((n+1)^(2))sum (1)/( sqrt( k ))

underset(r=0)overset(n-1)(sum)(.^(n)C_(r))/(.^(n)C_(r)+.^(n)C_(r+1)) equals

ML KHANNA-DEFINITE INTEGRAL-Problem Set (6) Multiple choice Questions
  1. lim(n to oo)((1)/(1+n^(3))+(4)/(8+n^(3))+....+(r^(2))/(r^(3)+n^(3))+.....

    Text Solution

    |

  2. underset(n to oo)"lim"underset(r=1)overset(n)sum((r^(3))/(r^(4) + n^(4...

    Text Solution

    |

  3. underset(nrarroo)lim[(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+....

    Text Solution

    |

  4. v20.1

    Text Solution

    |

  5. Evaluate: (lim)(nvecoo)([(n+1)(n+2)(n+n)^(1/n))/n

    Text Solution

    |

  6. The value of lim(n rarr oo) [((2n)!)/(n!n^(n))]^(1//n) is equal to

    Text Solution

    |

  7. Lim(n rarr oo)[(1)/(1-n^(2))+(2)/(1-n^(2))+.....+(n)/(1-n^(2))] is equ...

    Text Solution

    |

  8. lim(n rarr oo) (1)/(n) ["tan"(pi)/(4n) + "tan"(2pi)/(4n) + …+ "tan"(n ...

    Text Solution

    |

  9. The value of lim(nrarroo)(1)/(n)[sec^(2)""(pi)/(4n)+sec^(2)""(2pi)/(4n...

    Text Solution

    |

  10. Evaluate: ("lim")(nvecoo)[1/(n^2)sec^2 1/(n^2)+2//n^2sec^2 4/(n^2)++1/...

    Text Solution

    |

  11. lim(n rarr oo) (1^(99) + 2^(99) + …+ n^(99))/(n^(100))=

    Text Solution

    |

  12. Lt(nrarroo) (1+2^4+3^4+ … +n^4)/n^5-Lt(nrarroo) (1+2^3+3^3 + … +n^3)/n...

    Text Solution

    |

  13. Lt(nrarroo) (1+2^4+3^4+ … +n^4)/n^5-Lt(nrarroo) (1+2^3+3^3 + … +n^3)/n...

    Text Solution

    |

  14. Lt(n rarr oo) (2^(k) + 4^(k) + 6^(k) + …+ (2n)^(k))/(n^(k+1)) , k ne -...

    Text Solution

    |

  15. underset(n to oo)lim(1)/(2)" " underset(r=+1)overset(2n)sum (r)/(s...

    Text Solution

    |

  16. Lt(n rarr oo) Sigma(r=1)^(n-1) (pi)/(n) sin ((r pi)/(n))=

    Text Solution

    |

  17. underset(n to oo)lim underset(r=1)overset(n)sum(1)/(n)e^(r//n) is

    Text Solution

    |

  18. Lt(n rarr oo) [(1)/(n^(2)) sin ((1+ n^(2))/(n^(2))) + (2)/(n^(2)) sin ...

    Text Solution

    |

  19. Given that lim(nto oo) sum(r=1)^(n) (log (r+n)-log n)/(n)=2(log 2-(1...

    Text Solution

    |

  20. Let S(n)=underset(k=1)overset(n)sum (n)/(n^(2)+nk+k^(2)) and T(n)=unde...

    Text Solution

    |