Home
Class 12
MATHS
Lt(n rarr oo) Sigma(r=1)^(n-1) (pi)/(n) ...

`Lt_(n rarr oo) Sigma_(r=1)^(n-1) (pi)/(n) sin ((r pi)/(n))`=

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit of the summation given in the question, we will convert the summation into an integral. Let's break down the solution step by step. ### Step 1: Rewrite the Summation We start with the expression: \[ \lim_{n \to \infty} \sum_{r=1}^{n-1} \frac{\pi}{n} \sin\left(\frac{r \pi}{n}\right) \] This summation can be interpreted as a Riemann sum, which approximates the integral of a function over an interval. ### Step 2: Identify the Limits of Integration As \( n \to \infty \): - The lower limit of \( r/n \) as \( r \) approaches 1 becomes \( \frac{1}{n} \to 0 \). - The upper limit of \( r/n \) as \( r \) approaches \( n-1 \) becomes \( \frac{n-1}{n} \to 1 \). Thus, we can rewrite the summation as: \[ \lim_{n \to \infty} \sum_{r=1}^{n-1} \frac{\pi}{n} \sin\left(\frac{r \pi}{n}\right) \approx \int_0^1 \pi \sin(\pi x) \, dx \] where we let \( x = \frac{r}{n} \). ### Step 3: Set Up the Integral Now we can express the limit of the summation as an integral: \[ \int_0^1 \pi \sin(\pi x) \, dx \] ### Step 4: Evaluate the Integral To evaluate the integral, we can use the following formula: \[ \int \sin(kx) \, dx = -\frac{1}{k} \cos(kx) + C \] In our case, \( k = \pi \): \[ \int \sin(\pi x) \, dx = -\frac{1}{\pi} \cos(\pi x) \] Thus, we have: \[ \int_0^1 \pi \sin(\pi x) \, dx = \pi \left[-\frac{1}{\pi} \cos(\pi x)\right]_0^1 \] ### Step 5: Apply the Limits Now we evaluate the limits: \[ = \pi \left[-\frac{1}{\pi} \cos(\pi) + \frac{1}{\pi} \cos(0)\right] \] Calculating the cosine values: - \( \cos(\pi) = -1 \) - \( \cos(0) = 1 \) Substituting these values in: \[ = \pi \left[-\frac{1}{\pi}(-1) + \frac{1}{\pi}(1)\right] = \pi \left[\frac{1}{\pi} + \frac{1}{\pi}\right] = \pi \cdot \frac{2}{\pi} = 2 \] ### Final Result Thus, the limit of the summation is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

What is the value of,Lt_(n rarr oo)sum_(r=1)^(n)(1)/(n)e^((r)/(n))

If lim_(n rarr oo)(prod_(r=1)^(n)sin((r pi)/(4n))cos((r pi)/(4n)))^((1)/(n))=(a)/(b) a,b in N then find the least value of (a+b)

The value of lim_(n rarr oo)sum_(i=1)^(n)(i)/(n^2)sin((pi i^(2))/(n^(2))) is equal to

The value of Lt_(n rarr oo)prod_(r=1)^(n)((n+r)/(n))^((1)/(n)) equals

Compute underset(n rarr oo)("lim")(pi)/(n)| "sin"(pi)/(n) + "sin"(2pi)/(n)+ ….+ "sin"((n-1)pi)/(n)|

The value of lim_(n rarroo) sum_(r=1)^(n)(1)/(sin{((n+r)pi)/(4n)}).(pi)/(n) is equal to

The value of sum_(r=0)^(n)C_(n-r)(n-r)sin((r pi)/(n))

ML KHANNA-DEFINITE INTEGRAL-Problem Set (6) Multiple choice Questions
  1. lim(n to oo)((1)/(1+n^(3))+(4)/(8+n^(3))+....+(r^(2))/(r^(3)+n^(3))+.....

    Text Solution

    |

  2. underset(n to oo)"lim"underset(r=1)overset(n)sum((r^(3))/(r^(4) + n^(4...

    Text Solution

    |

  3. underset(nrarroo)lim[(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+....

    Text Solution

    |

  4. v20.1

    Text Solution

    |

  5. Evaluate: (lim)(nvecoo)([(n+1)(n+2)(n+n)^(1/n))/n

    Text Solution

    |

  6. The value of lim(n rarr oo) [((2n)!)/(n!n^(n))]^(1//n) is equal to

    Text Solution

    |

  7. Lim(n rarr oo)[(1)/(1-n^(2))+(2)/(1-n^(2))+.....+(n)/(1-n^(2))] is equ...

    Text Solution

    |

  8. lim(n rarr oo) (1)/(n) ["tan"(pi)/(4n) + "tan"(2pi)/(4n) + …+ "tan"(n ...

    Text Solution

    |

  9. The value of lim(nrarroo)(1)/(n)[sec^(2)""(pi)/(4n)+sec^(2)""(2pi)/(4n...

    Text Solution

    |

  10. Evaluate: ("lim")(nvecoo)[1/(n^2)sec^2 1/(n^2)+2//n^2sec^2 4/(n^2)++1/...

    Text Solution

    |

  11. lim(n rarr oo) (1^(99) + 2^(99) + …+ n^(99))/(n^(100))=

    Text Solution

    |

  12. Lt(nrarroo) (1+2^4+3^4+ … +n^4)/n^5-Lt(nrarroo) (1+2^3+3^3 + … +n^3)/n...

    Text Solution

    |

  13. Lt(nrarroo) (1+2^4+3^4+ … +n^4)/n^5-Lt(nrarroo) (1+2^3+3^3 + … +n^3)/n...

    Text Solution

    |

  14. Lt(n rarr oo) (2^(k) + 4^(k) + 6^(k) + …+ (2n)^(k))/(n^(k+1)) , k ne -...

    Text Solution

    |

  15. underset(n to oo)lim(1)/(2)" " underset(r=+1)overset(2n)sum (r)/(s...

    Text Solution

    |

  16. Lt(n rarr oo) Sigma(r=1)^(n-1) (pi)/(n) sin ((r pi)/(n))=

    Text Solution

    |

  17. underset(n to oo)lim underset(r=1)overset(n)sum(1)/(n)e^(r//n) is

    Text Solution

    |

  18. Lt(n rarr oo) [(1)/(n^(2)) sin ((1+ n^(2))/(n^(2))) + (2)/(n^(2)) sin ...

    Text Solution

    |

  19. Given that lim(nto oo) sum(r=1)^(n) (log (r+n)-log n)/(n)=2(log 2-(1...

    Text Solution

    |

  20. Let S(n)=underset(k=1)overset(n)sum (n)/(n^(2)+nk+k^(2)) and T(n)=unde...

    Text Solution

    |