Home
Class 12
MATHS
Lt(n rarr oo) [(1)/(n^(2)) sin ((1+ n^(2...

`Lt_(n rarr oo) [(1)/(n^(2)) sin ((1+ n^(2))/(n^(2))) + (2)/(n^(2)) sin ((4+ n^(2))/(n^(2))) + (3)/(n^(2)) sin ((9+ n^(2))/(n^(2))) + …(2)/(n) sin (5)]`=

A

`cos 2 sin 3`

B

`sin 2 cos 3`

C

`sin 2 sin 3`

D

`cos 2 cos 3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \left[ \frac{1}{n^2} \sin\left(\frac{1+n^2}{n^2}\right) + \frac{2}{n^2} \sin\left(\frac{4+n^2}{n^2}\right) + \frac{3}{n^2} \sin\left(\frac{9+n^2}{n^2}\right) + \ldots + \frac{n}{n^2} \sin\left(\frac{n^2}{n^2}\right) \right], \] we can rewrite the expression in summation form: \[ \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{n^2} \sin\left(\frac{k^2+n^2}{n^2}\right). \] This can be simplified to: \[ \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{n^2} \sin\left(\frac{k^2}{n^2} + 1\right). \] Next, we can make the substitution \( t = \frac{k}{n} \), which implies \( k = nt \) and \( \Delta k = n \Delta t \). The sum can be approximated by an integral as \( n \to \infty \): \[ \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{n^2} \sin\left(\frac{k^2}{n^2} + 1\right) \approx \int_{0}^{1} t \sin(t^2 + 1) \, dt. \] Now we need to evaluate the integral: \[ \int_{0}^{1} t \sin(t^2 + 1) \, dt. \] To solve this integral, we can use the substitution \( u = t^2 + 1 \). Then, \( du = 2t \, dt \) or \( dt = \frac{du}{2t} \). The limits change as follows: when \( t = 0 \), \( u = 1 \) and when \( t = 1 \), \( u = 2 \). Thus, the integral becomes: \[ \int_{1}^{2} \frac{1}{2} \sin(u) \, du. \] Now we can integrate: \[ \frac{1}{2} \left[-\cos(u)\right]_{1}^{2} = \frac{1}{2} \left[-\cos(2) + \cos(1)\right]. \] This simplifies to: \[ \frac{1}{2} \left(\cos(1) - \cos(2)\right). \] Finally, we can use the cosine subtraction formula: \[ \cos(1) - \cos(2) = -2 \sin\left(\frac{1 + 2}{2}\right) \sin\left(\frac{2 - 1}{2}\right) = -2 \sin\left(\frac{3}{2}\right) \sin\left(\frac{1}{2}\right). \] Thus, the limit evaluates to: \[ \frac{1}{2} \cdot (-2 \sin\left(\frac{3}{2}\right) \sin\left(\frac{1}{2}\right)) = -\sin\left(\frac{3}{2}\right) \sin\left(\frac{1}{2}\right). \] So the final answer is: \[ \lim_{n \to \infty} \left[ \frac{1}{n^2} \sin\left(\frac{1+n^2}{n^2}\right) + \frac{2}{n^2} \sin\left(\frac{4+n^2}{n^2}\right) + \frac{3}{n^2} \sin\left(\frac{9+n^2}{n^2}\right) + \ldots + \frac{n}{n^2} \sin\left(\frac{n^2}{n^2}\right) \right] = -\sin\left(\frac{3}{2}\right) \sin\left(\frac{1}{2}\right). \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Fill in the blanks|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))+...+(n)/(n^(2)))

lim_ (n rarr oo) ((1) / (n ^ (2)) + (2) / (n ^ (2)) + (3) / (n ^ (2)) ++ (n-1) / (n ^ (2)))

Lt_(n rarr oo)((1^(2)+1)/(n^(3))+(2^(2)+2)/(n^(3))+(3^(2)+3)/(n^(3))+...+(n^(2)+n)/(n^(3)))

lim_(n rarr oo){(1)/(2)(n^(2)+1)sin^(-1)((2n)/(1+n^(2)))-n}=

lim_(n rarr oo)[(1^(2))/(n^(3))+(2^(2))/(n^(3))+(3^(2))/(n^(3))+...+(n^(2))/(n^(3))]=?

lim_ (n rarr oo) [(1+ (1) / (n ^ (2)))) (1+ (2 ^ (2)) / (n ^ (2))) (1+ (3 ^ (2) ) / (n ^ (2))) ...... (1+ (n ^ (2)) / (n ^ (2)))] ^ ((1) / (n))

ML KHANNA-DEFINITE INTEGRAL-Problem Set (6) Multiple choice Questions
  1. lim(n to oo)((1)/(1+n^(3))+(4)/(8+n^(3))+....+(r^(2))/(r^(3)+n^(3))+.....

    Text Solution

    |

  2. underset(n to oo)"lim"underset(r=1)overset(n)sum((r^(3))/(r^(4) + n^(4...

    Text Solution

    |

  3. underset(nrarroo)lim[(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+....

    Text Solution

    |

  4. v20.1

    Text Solution

    |

  5. Evaluate: (lim)(nvecoo)([(n+1)(n+2)(n+n)^(1/n))/n

    Text Solution

    |

  6. The value of lim(n rarr oo) [((2n)!)/(n!n^(n))]^(1//n) is equal to

    Text Solution

    |

  7. Lim(n rarr oo)[(1)/(1-n^(2))+(2)/(1-n^(2))+.....+(n)/(1-n^(2))] is equ...

    Text Solution

    |

  8. lim(n rarr oo) (1)/(n) ["tan"(pi)/(4n) + "tan"(2pi)/(4n) + …+ "tan"(n ...

    Text Solution

    |

  9. The value of lim(nrarroo)(1)/(n)[sec^(2)""(pi)/(4n)+sec^(2)""(2pi)/(4n...

    Text Solution

    |

  10. Evaluate: ("lim")(nvecoo)[1/(n^2)sec^2 1/(n^2)+2//n^2sec^2 4/(n^2)++1/...

    Text Solution

    |

  11. lim(n rarr oo) (1^(99) + 2^(99) + …+ n^(99))/(n^(100))=

    Text Solution

    |

  12. Lt(nrarroo) (1+2^4+3^4+ … +n^4)/n^5-Lt(nrarroo) (1+2^3+3^3 + … +n^3)/n...

    Text Solution

    |

  13. Lt(nrarroo) (1+2^4+3^4+ … +n^4)/n^5-Lt(nrarroo) (1+2^3+3^3 + … +n^3)/n...

    Text Solution

    |

  14. Lt(n rarr oo) (2^(k) + 4^(k) + 6^(k) + …+ (2n)^(k))/(n^(k+1)) , k ne -...

    Text Solution

    |

  15. underset(n to oo)lim(1)/(2)" " underset(r=+1)overset(2n)sum (r)/(s...

    Text Solution

    |

  16. Lt(n rarr oo) Sigma(r=1)^(n-1) (pi)/(n) sin ((r pi)/(n))=

    Text Solution

    |

  17. underset(n to oo)lim underset(r=1)overset(n)sum(1)/(n)e^(r//n) is

    Text Solution

    |

  18. Lt(n rarr oo) [(1)/(n^(2)) sin ((1+ n^(2))/(n^(2))) + (2)/(n^(2)) sin ...

    Text Solution

    |

  19. Given that lim(nto oo) sum(r=1)^(n) (log (r+n)-log n)/(n)=2(log 2-(1...

    Text Solution

    |

  20. Let S(n)=underset(k=1)overset(n)sum (n)/(n^(2)+nk+k^(2)) and T(n)=unde...

    Text Solution

    |