Home
Class 12
MATHS
e^((x-1)-(1)/(2) (x-1)^(2) + (1)/(3) (x-...

`e^((x-1)-(1)/(2) (x-1)^(2) + (1)/(3) (x-1)^(3) - (1)/(4) (x-1)^(4) +...`

A

x

B

`x-1`

C

`log x `

D

`log (x-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given series \( e^{(x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3 - \frac{1}{4}(x-1)^4 + \ldots} \), we can follow these steps: ### Step 1: Define the Series Let \( y = e^{(x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3 - \frac{1}{4}(x-1)^4 + \ldots} \). ### Step 2: Recognize the Series as a Logarithmic Expansion The series inside the exponent resembles the Taylor series expansion for \( \log(1 + u) \), where \( u = (x-1) \). The Taylor series expansion for \( \log(1 + u) \) is given by: \[ \log(1 + u) = u - \frac{u^2}{2} + \frac{u^3}{3} - \frac{u^4}{4} + \ldots \] Thus, we can rewrite the exponent as: \[ y = e^{\log(1 + (x-1))} = e^{\log(x)}. \] ### Step 3: Apply the Exponential and Logarithmic Properties Using the property of exponentials and logarithms, we know that: \[ e^{\log(x)} = x. \] ### Step 4: Conclusion Therefore, we conclude that: \[ y = x. \] ### Final Answer The final result is: \[ y = x. \] ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE)|7 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS )|5 Videos
  • EXAMINATION PAPER-2014 (IIT-JEE-MAIN)

    ML KHANNA|Exercise Multiple Choice Question |30 Videos
  • FUNCTIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos

Similar Questions

Explore conceptually related problems

Find the sum of the series e^(x-(1)/(2)(x -1)^(2) + (1)/(3) (x -1)^(3) - (1)/(4) (x -1)^(4) + ...

e^((x-1)-(1)/(2)(x-1)^(2)+((x-1)^(3))/(3)-((x-1)^(4))/(4)+...cdots) is eqaul to

" If (3x^(3)-8x^(2)+10)/((x-1)^(4))=(3)/(x-1)+(1)/((x-1)^(2))-(7)/((x-1)^(3))+(k)/((x-1)^(2)) then "k=

x^((x-1)- 1/2 (x-1)^2+1/3((x-1)^3).- 1/4((x-1)^4).+…….. is equal to (A) 2logx (B) logx (C) x^2 (D) none of these

(1)/(x+2)+(1)/(x)=(3)/(4)

If 0 lt x lt 1 and y=(1)/(2) x^(2) +(2)/(3) x^(3) +(3)/(4) x^(4) + ……. , then the vlaue of e^(1+y) at x=(1)/(2) is :

((2)/(3)x+4)((3)/(2)x+6)-((1)/(7)x-1)((1)/(7)x+1)

Solvef or x,(1)/((x-1)(x-2))+(1)/((x-2)(x-3))+(1)/((x-3)(x-4))=(1)/(6)

(e) (2x-3)/2 + ( 2x +(3x -1)/4) = 1/8

ML KHANNA-EXPONENTIAL AND LOGARITHMIC SERIES -Problem Set (2) (MULTIPLE CHOICE QUESTIONS )
  1. The sum of the series ((a-b)/(a))+1/2((a-b)/(x))^(2)+1/3((a-b)/(a))^...

    Text Solution

    |

  2. e^((x-1)-(1)/(2) (x-1)^(2) + (1)/(3) (x-1)^(3) - (1)/(4) (x-1)^(4) +.....

    Text Solution

    |

  3. If y = x - (x^(2))/(2) + (x^(3))/(3) -... then x =

    Text Solution

    |

  4. The sum of the series log(4) 2 -log(8) 2 + log(16) 2 -...is

    Text Solution

    |

  5. If S = (1)/(1.2) - (1)/(2.3) + (1)/(3.4) -(1)/(4.5) +...oo

    Text Solution

    |

  6. The sum of the series (1)/(2.3) + (1)/(4.5) + (1)/(6.7) + ...oo=

    Text Solution

    |

  7. (1)/(1.3) + (1)/(2.5) + (1)/(3.7) + (1)/(4.9) +... is equal to

    Text Solution

    |

  8. 1 + (2)/(1.2.3) + (2)/(3.4.5) + (2)/(5.6.7) + ... =

    Text Solution

    |

  9. 1 /(1.3.5) + (1)/(3.5.7) + (1)/(5.7.9) +...oo

    Text Solution

    |

  10. Sum of the series 1/(1*2*3)+5/(3*4*5)+9/(5*6*7 )+... is equal to

    Text Solution

    |

  11. Sum of n terms of the series 1/(1.2.3.4.)+1/(2.3.4.5) +1/(3.4.5.6)+.....

    Text Solution

    |

  12. If y+(y^(3))/(3)+(Y^(5))/(5)+…infty=2(x+(x^(3))/(3)+(x^(5))/(5)+..inft...

    Text Solution

    |

  13. The coefficient of x^(n) in the exansion of log(e)(1+3x+2x^(2)) is

    Text Solution

    |

  14. The value of log 2+2 (1/5+1/3.(1)/(5^(3))+1/5.(1)/(5^(5))+..+infty) is

    Text Solution

    |

  15. 2[(1)/(2x + 1) + (1)/(3(2x + 1)^(3)) + (1)/(5(2x + 1)^(5)) + (1)/(5(2x...

    Text Solution

    |

  16. 2{(m-n)/(m+n)+1/3((m-n)/(m+n))^(3)+1/5((m-n)/(m+n))^(5)+..} is equals ...

    Text Solution

    |

  17. The sum of the series 1 + ((1)/(2) + (1)/(3)) (1)/(4) + ((1)/(4) + ...

    Text Solution

    |

  18. The series expansion of log{(1+x)^(1+x)(1-x)^(1-x)} is

    Text Solution

    |

  19. The coefficient of x^(6) in the expansion of log{(1+x)^(1+x)(1-x)^(...

    Text Solution

    |

  20. 2log x-log(x+1)-log(x-1) is equals to

    Text Solution

    |