Home
Class 12
MATHS
The sum of the series log(4) 2 -log(8) ...

The sum of the series `log_(4) 2 -log_(8) 2 + log_(16) 2 -`...is

A

`e^(2)`

B

`log_(e) 2 + 1`

C

`log_(e) 3-2`

D

`1-log_(e)2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series \( \log_{4} 2 - \log_{8} 2 + \log_{16} 2 - \ldots \), we can follow these steps: ### Step 1: Rewrite the logarithms using the change of base formula Using the change of base formula, we can express the logarithms in terms of base 2: \[ \log_{m} n = \frac{\log_{b} n}{\log_{b} m} \] For our series, we rewrite each term: \[ \log_{4} 2 = \frac{\log_{2} 2}{\log_{2} 4} = \frac{1}{2}, \quad \log_{8} 2 = \frac{\log_{2} 2}{\log_{2} 8} = \frac{1}{3}, \quad \log_{16} 2 = \frac{\log_{2} 2}{\log_{2} 16} = \frac{1}{4} \] ### Step 2: Substitute the values into the series Now substituting these values into the series, we get: \[ \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \ldots \] ### Step 3: Identify the pattern in the series The series can be expressed as: \[ S = \frac{1}{2} - \left(\frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \ldots\right) \] This can be rewritten by factoring out the negative sign: \[ S = \frac{1}{2} - \left(-\frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \ldots\right) \] ### Step 4: Recognize the alternating series The series \( \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \ldots \) can be recognized as an alternating series. We can express it in terms of the natural logarithm: \[ \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = \log(2) \] Thus, we can write: \[ S = \frac{1}{2} - \left(\log(2) - 1\right) \] ### Step 5: Simplify the expression Now, simplifying the expression gives: \[ S = 1 - \log(2) \] ### Conclusion Thus, the sum of the series is: \[ S = 1 - \log_{e} 2 \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE)|7 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS )|5 Videos
  • EXAMINATION PAPER-2014 (IIT-JEE-MAIN)

    ML KHANNA|Exercise Multiple Choice Question |30 Videos
  • FUNCTIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos

Similar Questions

Explore conceptually related problems

log_ (4) 2-log_ (8) 2+log_ (16) 2 -.... oo

The sum of the series "log"_(4)2-"log"_(8)2 + "log"_(16)2- "log"_(32) 2+…., is

The sum of the series log_(a)b+log_(a^(2))b^(2)+log_(a^(3))b^(3)+....log_(a^(n))b^(n)

The sum of the series: (1)/(log_(2)4)+(1)/(log_(4)4)+(1)/(log_(8)4)+...+(1)/(log_(2n)4) is (n(n+1))/(2) (b) (n(n+1)(2n+1))/(12) (c) (n(n+1))/(4) (d) none of these

the sum of the series (1)/(log_(2)4)+(1)/(log_(4)4)+(1)/(log_(8)4)+.........+(1)/(log_(2)^(n)4)

Find the sum of 'n' terms of the series. log_(2)(x/y) + log_(4)(x/y)^(2) + log_(8)(x/y)^(3) + log_(16)(x/y)^(4) +……..

If log_(x) 2 log_((x)/(16)) 2 = log_((x)/(64)) 2, then x =

ML KHANNA-EXPONENTIAL AND LOGARITHMIC SERIES -Problem Set (2) (MULTIPLE CHOICE QUESTIONS )
  1. e^((x-1)-(1)/(2) (x-1)^(2) + (1)/(3) (x-1)^(3) - (1)/(4) (x-1)^(4) +.....

    Text Solution

    |

  2. If y = x - (x^(2))/(2) + (x^(3))/(3) -... then x =

    Text Solution

    |

  3. The sum of the series log(4) 2 -log(8) 2 + log(16) 2 -...is

    Text Solution

    |

  4. If S = (1)/(1.2) - (1)/(2.3) + (1)/(3.4) -(1)/(4.5) +...oo

    Text Solution

    |

  5. The sum of the series (1)/(2.3) + (1)/(4.5) + (1)/(6.7) + ...oo=

    Text Solution

    |

  6. (1)/(1.3) + (1)/(2.5) + (1)/(3.7) + (1)/(4.9) +... is equal to

    Text Solution

    |

  7. 1 + (2)/(1.2.3) + (2)/(3.4.5) + (2)/(5.6.7) + ... =

    Text Solution

    |

  8. 1 /(1.3.5) + (1)/(3.5.7) + (1)/(5.7.9) +...oo

    Text Solution

    |

  9. Sum of the series 1/(1*2*3)+5/(3*4*5)+9/(5*6*7 )+... is equal to

    Text Solution

    |

  10. Sum of n terms of the series 1/(1.2.3.4.)+1/(2.3.4.5) +1/(3.4.5.6)+.....

    Text Solution

    |

  11. If y+(y^(3))/(3)+(Y^(5))/(5)+…infty=2(x+(x^(3))/(3)+(x^(5))/(5)+..inft...

    Text Solution

    |

  12. The coefficient of x^(n) in the exansion of log(e)(1+3x+2x^(2)) is

    Text Solution

    |

  13. The value of log 2+2 (1/5+1/3.(1)/(5^(3))+1/5.(1)/(5^(5))+..+infty) is

    Text Solution

    |

  14. 2[(1)/(2x + 1) + (1)/(3(2x + 1)^(3)) + (1)/(5(2x + 1)^(5)) + (1)/(5(2x...

    Text Solution

    |

  15. 2{(m-n)/(m+n)+1/3((m-n)/(m+n))^(3)+1/5((m-n)/(m+n))^(5)+..} is equals ...

    Text Solution

    |

  16. The sum of the series 1 + ((1)/(2) + (1)/(3)) (1)/(4) + ((1)/(4) + ...

    Text Solution

    |

  17. The series expansion of log{(1+x)^(1+x)(1-x)^(1-x)} is

    Text Solution

    |

  18. The coefficient of x^(6) in the expansion of log{(1+x)^(1+x)(1-x)^(...

    Text Solution

    |

  19. 2log x-log(x+1)-log(x-1) is equals to

    Text Solution

    |

  20. The coefficient of x^(n), where n = 3k in the expansion of log (1 + x ...

    Text Solution

    |