Home
Class 12
MATHS
If S = (1)/(1.2) - (1)/(2.3) + (1)/(3.4)...

If `S = (1)/(1.2) - (1)/(2.3) + (1)/(3.4) -(1)/(4.5) +...oo`

A

`2 log 2-1`

B

`3 log 2 `

C

`log(4//e)`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series \[ S = \frac{1}{1 \cdot 2} - \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} - \frac{1}{4 \cdot 5} + \ldots \] we can express each term in a more manageable form. ### Step 1: Rewrite the terms We can rewrite the general term of the series as follows: \[ \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1} \] Thus, the series can be rewritten as: \[ S = \left( \frac{1}{1} - \frac{1}{2} \right) - \left( \frac{1}{2} - \frac{1}{3} \right) + \left( \frac{1}{3} - \frac{1}{4} \right) - \left( \frac{1}{4} - \frac{1}{5} \right) + \ldots \] ### Step 2: Group the terms Now, we can group the terms: \[ S = \left( \frac{1}{1} - \frac{1}{2} \right) + \left( -\frac{1}{2} + \frac{1}{3} \right) + \left( -\frac{1}{3} + \frac{1}{4} \right) + \left( -\frac{1}{4} + \frac{1}{5} \right) + \ldots \] ### Step 3: Simplify the series Notice that the series is alternating and telescoping. Most terms will cancel out: \[ S = 1 - \left( \frac{1}{2} - \frac{1}{2} + \frac{1}{3} - \frac{1}{3} + \frac{1}{4} - \frac{1}{4} + \ldots \right) \] Thus, we can see that: \[ S = 1 - \lim_{n \to \infty} \frac{1}{n+1} \] ### Step 4: Evaluate the limit As \( n \) approaches infinity, \( \frac{1}{n+1} \) approaches 0. Therefore, we have: \[ S = 1 - 0 = 1 \] ### Final Result Thus, the sum of the series is: \[ S = 1 \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE)|7 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS )|5 Videos
  • EXAMINATION PAPER-2014 (IIT-JEE-MAIN)

    ML KHANNA|Exercise Multiple Choice Question |30 Videos
  • FUNCTIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos

Similar Questions

Explore conceptually related problems

The sum of the series (1)/(1.2)-(1)/(2.3)+(1)/(3.4)-(1)/(4.5)+... is

lim_ (n rarr oo) [(1) / (1.2) + (1) / (2.3) + (1) / (3.4) + ... + (1) / (n (n + 1))] =

If x = (1)/(1.2) + (1)/(3.4) + (1)/(5.6) …….oo, and y = 1 - (1)/(2.3) - (1)/(4.5) - (1)/(6.7)…….oo , then

ML KHANNA-EXPONENTIAL AND LOGARITHMIC SERIES -Problem Set (2) (MULTIPLE CHOICE QUESTIONS )
  1. If y = x - (x^(2))/(2) + (x^(3))/(3) -... then x =

    Text Solution

    |

  2. The sum of the series log(4) 2 -log(8) 2 + log(16) 2 -...is

    Text Solution

    |

  3. If S = (1)/(1.2) - (1)/(2.3) + (1)/(3.4) -(1)/(4.5) +...oo

    Text Solution

    |

  4. The sum of the series (1)/(2.3) + (1)/(4.5) + (1)/(6.7) + ...oo=

    Text Solution

    |

  5. (1)/(1.3) + (1)/(2.5) + (1)/(3.7) + (1)/(4.9) +... is equal to

    Text Solution

    |

  6. 1 + (2)/(1.2.3) + (2)/(3.4.5) + (2)/(5.6.7) + ... =

    Text Solution

    |

  7. 1 /(1.3.5) + (1)/(3.5.7) + (1)/(5.7.9) +...oo

    Text Solution

    |

  8. Sum of the series 1/(1*2*3)+5/(3*4*5)+9/(5*6*7 )+... is equal to

    Text Solution

    |

  9. Sum of n terms of the series 1/(1.2.3.4.)+1/(2.3.4.5) +1/(3.4.5.6)+.....

    Text Solution

    |

  10. If y+(y^(3))/(3)+(Y^(5))/(5)+…infty=2(x+(x^(3))/(3)+(x^(5))/(5)+..inft...

    Text Solution

    |

  11. The coefficient of x^(n) in the exansion of log(e)(1+3x+2x^(2)) is

    Text Solution

    |

  12. The value of log 2+2 (1/5+1/3.(1)/(5^(3))+1/5.(1)/(5^(5))+..+infty) is

    Text Solution

    |

  13. 2[(1)/(2x + 1) + (1)/(3(2x + 1)^(3)) + (1)/(5(2x + 1)^(5)) + (1)/(5(2x...

    Text Solution

    |

  14. 2{(m-n)/(m+n)+1/3((m-n)/(m+n))^(3)+1/5((m-n)/(m+n))^(5)+..} is equals ...

    Text Solution

    |

  15. The sum of the series 1 + ((1)/(2) + (1)/(3)) (1)/(4) + ((1)/(4) + ...

    Text Solution

    |

  16. The series expansion of log{(1+x)^(1+x)(1-x)^(1-x)} is

    Text Solution

    |

  17. The coefficient of x^(6) in the expansion of log{(1+x)^(1+x)(1-x)^(...

    Text Solution

    |

  18. 2log x-log(x+1)-log(x-1) is equals to

    Text Solution

    |

  19. The coefficient of x^(n), where n = 3k in the expansion of log (1 + x ...

    Text Solution

    |

  20. The coefficient of x^(n) in the expansion of log(e)((1)/(1+x+x^(2)+x^(...

    Text Solution

    |