Home
Class 12
MATHS
1 /(1.3.5) + (1)/(3.5.7) + (1)/(5.7.9) +...

`1 /(1.3.5) + (1)/(3.5.7) + (1)/(5.7.9) +...oo`

A

`(1)/(3)`

B

`(1)/(8)`

C

`3 log 2`

D

`(1)/(12)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series \( S = \frac{1}{1 \cdot 3 \cdot 5} + \frac{1}{3 \cdot 5 \cdot 7} + \frac{1}{5 \cdot 7 \cdot 9} + \ldots \), we can follow these steps: ### Step 1: Rewrite the series We can express the series in a more manageable form. Notice that each term in the series can be represented as: \[ S = \sum_{n=0}^{\infty} \frac{1}{(2n+1)(2n+3)(2n+5)} \] ### Step 2: Factor out a constant To simplify the terms, we can multiply and divide each term by 4: \[ S = \frac{1}{4} \left( \frac{4}{1 \cdot 3 \cdot 5} + \frac{4}{3 \cdot 5 \cdot 7} + \frac{4}{5 \cdot 7 \cdot 9} + \ldots \right) \] ### Step 3: Rewrite the numerator Now, we can rewrite the numerator \( 4 \) in terms of the sequence: \[ 4 = (5 - 1), \quad 4 = (7 - 3), \quad 4 = (9 - 5) \] Thus, we can express the series as: \[ S = \frac{1}{4} \left( \sum_{n=0}^{\infty} \left( \frac{5}{(2n+1)(2n+3)(2n+5)} - \frac{1}{(2n+1)(2n+3)(2n+5)} \right) \right) \] ### Step 4: Split the series This allows us to split the series into two parts: \[ S = \frac{1}{4} \left( \sum_{n=0}^{\infty} \frac{1}{(2n+1)(2n+3)} - \sum_{n=0}^{\infty} \frac{1}{(2n+3)(2n+5)} \right) \] ### Step 5: Recognize cancellation Notice that each term cancels with the subsequent term: \[ S = \frac{1}{4} \left( \frac{1}{1 \cdot 3} - \lim_{n \to \infty} \frac{1}{(2n+3)(2n+5)} \right) \] As \( n \to \infty \), the limit approaches zero. ### Step 6: Calculate the remaining term The remaining term is: \[ \frac{1}{1 \cdot 3} = \frac{1}{3} \] Thus, we have: \[ S = \frac{1}{4} \cdot \frac{1}{3} = \frac{1}{12} \] ### Final Answer Therefore, the value of the series is: \[ S = \frac{1}{12} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE)|7 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS )|5 Videos
  • EXAMINATION PAPER-2014 (IIT-JEE-MAIN)

    ML KHANNA|Exercise Multiple Choice Question |30 Videos
  • FUNCTIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos

Similar Questions

Explore conceptually related problems

(3) / (6) + (3.5) / (6.9) + (3.5.7) / (6.9.1.2) + .... oo =

The sum of the infinite series is (1)/(1.3)+(1)/(3.5)+(1)/(5.7)+...oo(A)(1)/(7)(B)(1)/(3)(C)(1)/(5) (D) (1)/(2)

If x = (1)/(1.2) + (1)/(3.4) + (1)/(5.6) …….oo, and y = 1 - (1)/(2.3) - (1)/(4.5) - (1)/(6.7)…….oo , then

1- (1) / (5) + (1.4) / (5.10) - (1.4.7) / (5.10.15) + ... oo =

lim_(n rarr oo){(1)/(1.3)+(1)/(3.5)+(1)/(5.7)+....+(1)/((2n+1)(2n+3 ))

ML KHANNA-EXPONENTIAL AND LOGARITHMIC SERIES -Problem Set (2) (MULTIPLE CHOICE QUESTIONS )
  1. (1)/(1.3) + (1)/(2.5) + (1)/(3.7) + (1)/(4.9) +... is equal to

    Text Solution

    |

  2. 1 + (2)/(1.2.3) + (2)/(3.4.5) + (2)/(5.6.7) + ... =

    Text Solution

    |

  3. 1 /(1.3.5) + (1)/(3.5.7) + (1)/(5.7.9) +...oo

    Text Solution

    |

  4. Sum of the series 1/(1*2*3)+5/(3*4*5)+9/(5*6*7 )+... is equal to

    Text Solution

    |

  5. Sum of n terms of the series 1/(1.2.3.4.)+1/(2.3.4.5) +1/(3.4.5.6)+.....

    Text Solution

    |

  6. If y+(y^(3))/(3)+(Y^(5))/(5)+…infty=2(x+(x^(3))/(3)+(x^(5))/(5)+..inft...

    Text Solution

    |

  7. The coefficient of x^(n) in the exansion of log(e)(1+3x+2x^(2)) is

    Text Solution

    |

  8. The value of log 2+2 (1/5+1/3.(1)/(5^(3))+1/5.(1)/(5^(5))+..+infty) is

    Text Solution

    |

  9. 2[(1)/(2x + 1) + (1)/(3(2x + 1)^(3)) + (1)/(5(2x + 1)^(5)) + (1)/(5(2x...

    Text Solution

    |

  10. 2{(m-n)/(m+n)+1/3((m-n)/(m+n))^(3)+1/5((m-n)/(m+n))^(5)+..} is equals ...

    Text Solution

    |

  11. The sum of the series 1 + ((1)/(2) + (1)/(3)) (1)/(4) + ((1)/(4) + ...

    Text Solution

    |

  12. The series expansion of log{(1+x)^(1+x)(1-x)^(1-x)} is

    Text Solution

    |

  13. The coefficient of x^(6) in the expansion of log{(1+x)^(1+x)(1-x)^(...

    Text Solution

    |

  14. 2log x-log(x+1)-log(x-1) is equals to

    Text Solution

    |

  15. The coefficient of x^(n), where n = 3k in the expansion of log (1 + x ...

    Text Solution

    |

  16. The coefficient of x^(n) in the expansion of log(e)((1)/(1+x+x^(2)+x^(...

    Text Solution

    |

  17. If log(1-x+x^(2))=a(1)x+a(2)x^(2)+a(3)x^(3)+… then a(3)+a(6)+a(9)+.....

    Text Solution

    |

  18. The coefficient of n^(-r) in the expansion of log(10)((n)/(n-1)) is

    Text Solution

    |

  19. If log(1-x+x^(2))=a(1)x+a(2)x^(2)+a(3)x^(3)+… then a(3)+a(6)+a(9)+.....

    Text Solution

    |

  20. The sum of the series (1)/(2)x^(2) + (2)/(3)x^(3) + (3)/(4)x^(4) + ...

    Text Solution

    |