Home
Class 12
MATHS
The sum of the series 1 + ((1)/(2) + ...

The sum of the series
`1 + ((1)/(2) + (1)/(3)) (1)/(4) + ((1)/(4) + (1)/(5)) (1)/(4^(2)) + ((1)/(6) + (1)/(7)) (1)/(4^(3)) + ...oo`

A

`log sqrt(6)`

B

`log sqrt(3)`

C

`log sqrt(12)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series \[ S = 1 + \left( \frac{1}{2} + \frac{1}{3} \right) \frac{1}{4} + \left( \frac{1}{4} + \frac{1}{5} \right) \frac{1}{4^2} + \left( \frac{1}{6} + \frac{1}{7} \right) \frac{1}{4^3} + \ldots \] we can break it down step by step. ### Step 1: Expand the Series First, we can rewrite the series by distributing the terms: \[ S = 1 + \frac{1}{2} \cdot \frac{1}{4} + \frac{1}{3} \cdot \frac{1}{4} + \frac{1}{4} \cdot \frac{1}{4^2} + \frac{1}{5} \cdot \frac{1}{4^2} + \frac{1}{6} \cdot \frac{1}{4^3} + \frac{1}{7} \cdot \frac{1}{4^3} + \ldots \] ### Step 2: Group the Terms Next, we can group the terms based on the powers of \( \frac{1}{4} \): \[ S = 1 + \left( \frac{1}{2} + \frac{1}{3} \right) \frac{1}{4} + \left( \frac{1}{4} + \frac{1}{5} \right) \frac{1}{4^2} + \left( \frac{1}{6} + \frac{1}{7} \right) \frac{1}{4^3} + \ldots \] ### Step 3: Identify Patterns Notice that the terms can be expressed in a more general form. The \( n \)-th term can be represented as: \[ \left( \frac{1}{2n} + \frac{1}{2n+1} \right) \frac{1}{4^{n-1}} \] for \( n = 1, 2, 3, \ldots \). ### Step 4: Use Logarithmic Series Using the logarithmic series, we know: \[ \log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots \] By manipulating the series, we can relate it to logarithmic functions. ### Step 5: Substitute Values We will substitute \( x = \frac{1}{2} \) into the logarithmic series: \[ S = -\frac{1}{2} \log(1 - x^2) + \frac{1}{2} \log\left(\frac{1+x}{1-x}\right) \] ### Step 6: Simplify Now substituting \( x = \frac{1}{2} \): \[ S = -\frac{1}{2} \log\left(1 - \left(\frac{1}{2}\right)^2\right) + \frac{1}{2} \log\left(\frac{1+\frac{1}{2}}{1-\frac{1}{2}}\right) \] This simplifies to: \[ S = -\frac{1}{2} \log\left(\frac{3}{4}\right) + \frac{1}{2} \log(3) \] ### Step 7: Final Calculation Combining the logarithmic terms: \[ S = \frac{1}{2} \log(4) + \frac{1}{2} \log(3) = \frac{1}{2} \log(12) \] Thus, the sum of the series is: \[ S = \frac{1}{2} \log(12) \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE)|7 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS )|5 Videos
  • EXAMINATION PAPER-2014 (IIT-JEE-MAIN)

    ML KHANNA|Exercise Multiple Choice Question |30 Videos
  • FUNCTIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos

Similar Questions

Explore conceptually related problems

The sum of the infinite series (1)/(2) ((1)/(3) + (1)/(4)) - (1)/(4)((1)/(3^(2)) + (1)/(4^(2))) + (1)/(6) ((1)/(3^(3)) + (1)/(4^(3))) - ...is equal to

The sum of the series (1)/(1.2)-(1)/(2.3)+(1)/(3.4)-(1)/(4.5)+... is

The sum of the first 35 terms of the series (1)/(2) + (1)/(3) -(1)/(4) -(1)/(2) -(1)/(3) +(1)/(4) +(1)/(2) + (1)/(3) -(1)/(4)

The sum of the series 1+(1)/(4)_(1)/(16)+(1)/(64)+....oo is

The sum of the series 1+ (1)/(4) + (1)/(16) + (1)/(64) + ...........oo is

Sum of the series (1)/(2)((1)/(2)+(1)/(3))-(1)/(4)((1)/(2^(2))+(1)/(3^(2)))+(1)/(6)((1)/(2^(3))+(1)/(3^(3)))+...oo

ML KHANNA-EXPONENTIAL AND LOGARITHMIC SERIES -Problem Set (2) (MULTIPLE CHOICE QUESTIONS )
  1. 1 /(1.3.5) + (1)/(3.5.7) + (1)/(5.7.9) +...oo

    Text Solution

    |

  2. Sum of the series 1/(1*2*3)+5/(3*4*5)+9/(5*6*7 )+... is equal to

    Text Solution

    |

  3. Sum of n terms of the series 1/(1.2.3.4.)+1/(2.3.4.5) +1/(3.4.5.6)+.....

    Text Solution

    |

  4. If y+(y^(3))/(3)+(Y^(5))/(5)+…infty=2(x+(x^(3))/(3)+(x^(5))/(5)+..inft...

    Text Solution

    |

  5. The coefficient of x^(n) in the exansion of log(e)(1+3x+2x^(2)) is

    Text Solution

    |

  6. The value of log 2+2 (1/5+1/3.(1)/(5^(3))+1/5.(1)/(5^(5))+..+infty) is

    Text Solution

    |

  7. 2[(1)/(2x + 1) + (1)/(3(2x + 1)^(3)) + (1)/(5(2x + 1)^(5)) + (1)/(5(2x...

    Text Solution

    |

  8. 2{(m-n)/(m+n)+1/3((m-n)/(m+n))^(3)+1/5((m-n)/(m+n))^(5)+..} is equals ...

    Text Solution

    |

  9. The sum of the series 1 + ((1)/(2) + (1)/(3)) (1)/(4) + ((1)/(4) + ...

    Text Solution

    |

  10. The series expansion of log{(1+x)^(1+x)(1-x)^(1-x)} is

    Text Solution

    |

  11. The coefficient of x^(6) in the expansion of log{(1+x)^(1+x)(1-x)^(...

    Text Solution

    |

  12. 2log x-log(x+1)-log(x-1) is equals to

    Text Solution

    |

  13. The coefficient of x^(n), where n = 3k in the expansion of log (1 + x ...

    Text Solution

    |

  14. The coefficient of x^(n) in the expansion of log(e)((1)/(1+x+x^(2)+x^(...

    Text Solution

    |

  15. If log(1-x+x^(2))=a(1)x+a(2)x^(2)+a(3)x^(3)+… then a(3)+a(6)+a(9)+.....

    Text Solution

    |

  16. The coefficient of n^(-r) in the expansion of log(10)((n)/(n-1)) is

    Text Solution

    |

  17. If log(1-x+x^(2))=a(1)x+a(2)x^(2)+a(3)x^(3)+… then a(3)+a(6)+a(9)+.....

    Text Solution

    |

  18. The sum of the series (1)/(2)x^(2) + (2)/(3)x^(3) + (3)/(4)x^(4) + ...

    Text Solution

    |

  19. If x, y, z are three consecutive positive integers, then (1)/(2) log...

    Text Solution

    |

  20. If S =(y-1-1/2(y-1)^(2)+1/3(y-1))^(3)/(a-1-1/2(a-1)^(2)+1/3(a-1)^(3)…....

    Text Solution

    |