Home
Class 12
MATHS
The coefficient of n^(-r) in the expansi...

The coefficient of `n^(-r)` in the expansion of `log_(10)((n)/(n-1))` is

A

`(1)/(r log 10)`

B

`(1)/(r log 10)`

C

`(1)/((r!)log10)`

D

`-(1)/((r!) log10)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the coefficient of \( n^{-r} \) in the expansion of \( \log_{10} \left( \frac{n}{n-1} \right) \), we can follow these steps: ### Step 1: Rewrite the logarithm We start with the expression: \[ \log_{10} \left( \frac{n}{n-1} \right) \] Using the change of base formula for logarithms, we can express this as: \[ \log_{10} \left( \frac{n}{n-1} \right) = \frac{\log_e \left( \frac{n}{n-1} \right)}{\log_e 10} \] ### Step 2: Simplify the logarithm Next, we simplify \( \log_e \left( \frac{n}{n-1} \right) \): \[ \log_e \left( \frac{n}{n-1} \right) = \log_e n - \log_e (n-1) \] Now we can write: \[ \log_{10} \left( \frac{n}{n-1} \right) = \frac{\log_e n - \log_e (n-1)}{\log_e 10} \] ### Step 3: Expand \( \log_e (n-1) \) We can use the Taylor series expansion for \( \log_e (1-x) \) around \( x = 0 \): \[ \log_e (1-x) = -\left( x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots \right) \] In our case, we can write \( n-1 \) as \( n(1 - \frac{1}{n}) \): \[ \log_e (n-1) = \log_e n + \log_e \left(1 - \frac{1}{n}\right) \] Thus, we have: \[ \log_e (n-1) = \log_e n - \left( \frac{1}{n} + \frac{1}{2n^2} + \frac{1}{3n^3} + \ldots \right) \] ### Step 4: Substitute back into the logarithm Substituting this back, we get: \[ \log_{10} \left( \frac{n}{n-1} \right) = \frac{\log_e n - \left( \log_e n - \left( \frac{1}{n} + \frac{1}{2n^2} + \frac{1}{3n^3} + \ldots \right) \right)}{\log_e 10} \] This simplifies to: \[ \log_{10} \left( \frac{n}{n-1} \right) = \frac{\frac{1}{n} + \frac{1}{2n^2} + \frac{1}{3n^3} + \ldots}{\log_e 10} \] ### Step 5: Identify the coefficient of \( n^{-r} \) From the expansion, the general term can be expressed as: \[ \frac{1}{k n^k} \quad \text{for } k = 1, 2, 3, \ldots \] Thus, the coefficient of \( n^{-r} \) in this expansion is: \[ \frac{1}{r \log_e 10} \] ### Conclusion The coefficient of \( n^{-r} \) in the expansion of \( \log_{10} \left( \frac{n}{n-1} \right) \) is: \[ \frac{1}{r \log_e 10} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE)|7 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS )|5 Videos
  • EXAMINATION PAPER-2014 (IIT-JEE-MAIN)

    ML KHANNA|Exercise Multiple Choice Question |30 Videos
  • FUNCTIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos

Similar Questions

Explore conceptually related problems

The coeffiecient of x^(n) in the expansion of log_(n)(1+x) is

The coefficient of x^(n) in the expansion of log_(a)(1+x) is

The coefficient of x^(n) in the expansion of (1+x)(1-x)^(n) is

Coefficient of x^(n) in the expansion of ((1+x)^(n))/(1-x)

If n is a positive integer,then the coefficient of x^(n) in the expansion of ((1+2x)^(n))/(1-x) is

ML KHANNA-EXPONENTIAL AND LOGARITHMIC SERIES -Problem Set (2) (MULTIPLE CHOICE QUESTIONS )
  1. 1 /(1.3.5) + (1)/(3.5.7) + (1)/(5.7.9) +...oo

    Text Solution

    |

  2. Sum of the series 1/(1*2*3)+5/(3*4*5)+9/(5*6*7 )+... is equal to

    Text Solution

    |

  3. Sum of n terms of the series 1/(1.2.3.4.)+1/(2.3.4.5) +1/(3.4.5.6)+.....

    Text Solution

    |

  4. If y+(y^(3))/(3)+(Y^(5))/(5)+…infty=2(x+(x^(3))/(3)+(x^(5))/(5)+..inft...

    Text Solution

    |

  5. The coefficient of x^(n) in the exansion of log(e)(1+3x+2x^(2)) is

    Text Solution

    |

  6. The value of log 2+2 (1/5+1/3.(1)/(5^(3))+1/5.(1)/(5^(5))+..+infty) is

    Text Solution

    |

  7. 2[(1)/(2x + 1) + (1)/(3(2x + 1)^(3)) + (1)/(5(2x + 1)^(5)) + (1)/(5(2x...

    Text Solution

    |

  8. 2{(m-n)/(m+n)+1/3((m-n)/(m+n))^(3)+1/5((m-n)/(m+n))^(5)+..} is equals ...

    Text Solution

    |

  9. The sum of the series 1 + ((1)/(2) + (1)/(3)) (1)/(4) + ((1)/(4) + ...

    Text Solution

    |

  10. The series expansion of log{(1+x)^(1+x)(1-x)^(1-x)} is

    Text Solution

    |

  11. The coefficient of x^(6) in the expansion of log{(1+x)^(1+x)(1-x)^(...

    Text Solution

    |

  12. 2log x-log(x+1)-log(x-1) is equals to

    Text Solution

    |

  13. The coefficient of x^(n), where n = 3k in the expansion of log (1 + x ...

    Text Solution

    |

  14. The coefficient of x^(n) in the expansion of log(e)((1)/(1+x+x^(2)+x^(...

    Text Solution

    |

  15. If log(1-x+x^(2))=a(1)x+a(2)x^(2)+a(3)x^(3)+… then a(3)+a(6)+a(9)+.....

    Text Solution

    |

  16. The coefficient of n^(-r) in the expansion of log(10)((n)/(n-1)) is

    Text Solution

    |

  17. If log(1-x+x^(2))=a(1)x+a(2)x^(2)+a(3)x^(3)+… then a(3)+a(6)+a(9)+.....

    Text Solution

    |

  18. The sum of the series (1)/(2)x^(2) + (2)/(3)x^(3) + (3)/(4)x^(4) + ...

    Text Solution

    |

  19. If x, y, z are three consecutive positive integers, then (1)/(2) log...

    Text Solution

    |

  20. If S =(y-1-1/2(y-1)^(2)+1/3(y-1))^(3)/(a-1-1/2(a-1)^(2)+1/3(a-1)^(3)…....

    Text Solution

    |