Home
Class 12
MATHS
If (7x-1)/(6x^(2)-5x+1)=(A)/(3x-1)+(B)/(...

If `(7x-1)/(6x^(2)-5x+1)=(A)/(3x-1)+(B)/(2x-1)`, then `A+B=?`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{7x-1}{6x^2-5x+1} = \frac{A}{3x-1} + \frac{B}{2x-1}\), we will follow these steps: ### Step 1: Factor the Denominator First, we need to factor the denominator \(6x^2 - 5x + 1\). We can rewrite it as: \[ 6x^2 - 5x + 1 = (3x - 1)(2x - 1) \] ### Step 2: Rewrite the Equation Now, we can rewrite the equation using the factored form: \[ \frac{7x - 1}{(3x - 1)(2x - 1)} = \frac{A}{3x - 1} + \frac{B}{2x - 1} \] ### Step 3: Combine the Right Side To combine the right side, we will find a common denominator: \[ \frac{A(2x - 1) + B(3x - 1)}{(3x - 1)(2x - 1)} \] ### Step 4: Set the Numerators Equal Since the denominators are the same, we can set the numerators equal to each other: \[ 7x - 1 = A(2x - 1) + B(3x - 1) \] ### Step 5: Expand the Right Side Expanding the right side gives: \[ 7x - 1 = (2Ax - A) + (3Bx - B) = (2A + 3B)x - (A + B) \] ### Step 6: Compare Coefficients Now we can compare the coefficients of \(x\) and the constant terms: 1. For \(x\): \(2A + 3B = 7\) 2. For the constant term: \(-A - B = -1\) or \(A + B = 1\) ### Step 7: Solve the System of Equations We now have a system of equations: 1. \(2A + 3B = 7\) 2. \(A + B = 1\) From the second equation, we can express \(A\) in terms of \(B\): \[ A = 1 - B \] Substituting this into the first equation: \[ 2(1 - B) + 3B = 7 \] \[ 2 - 2B + 3B = 7 \] \[ 2 + B = 7 \] \[ B = 5 \] Now substituting \(B = 5\) back into \(A + B = 1\): \[ A + 5 = 1 \implies A = 1 - 5 = -4 \] ### Step 8: Find \(A + B\) Now we can find \(A + B\): \[ A + B = -4 + 5 = 1 \] ### Final Answer Thus, the value of \(A + B\) is: \[ \boxed{1} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (FILL IN THE BLANKS)|8 Videos
  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (MULTIPLE CHOICE QUESTIONS|18 Videos
  • PAIR OF STRAIGHT LINES

    ML KHANNA|Exercise SELF ASSESSMENT TEST|10 Videos
  • PERMUTATIONS AND COMBINATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST|20 Videos

Similar Questions

Explore conceptually related problems

If (1-x+6x^(2))/(x-x^(3))=(A)/(x)+(B)/(1-x)+(C)/(1+x) then A=

Let a,b,c be such that (1)/((1-x)(1-2x)(1-3x))=(a)/(1-x)+(b)/(1-2x)+(c)/(1-3x) then (a)/(1)+(b)/(3)+(c)/(5)

Knowledge Check

  • If (3x^(2)+5)/((x^(2)+1)^2)= (a)/(x^(2)+1)+(b)/((x^(2)+1)^2) then (a, b)=

    A
    `(2,3)`
    B
    `(3,2)`
    C
    `(-2,3)`
    D
    `(-3,2)`
  • If 49x^(2)-b=(7x+(1)/(2))(7x-(1)/(2)), then the value of b is

    A
    0
    B
    `(1)/(sqrt(2))`
    C
    `(1)/(4)`
    D
    `(1)/(2)`
  • If (5x+6)/((2+x)(1-x))=a/(2+x)+b/(1-x) , then the values of a and b respectively are:

    A
    `-5/3,6/5`
    B
    `5/3,-6/5`
    C
    `-4/3,11/3`
    D
    `4/3,11/3`
  • Similar Questions

    Explore conceptually related problems

    (x^(2)+5x+1)/((x+1)(x+2)(x+3))=(A)/(x+1)+(B)/((x+1)(x+2))+(C)/((x+1)(x+2)(x+3)) then B=

    If f(x)=(x-1)/(2x^(2)-7x+5) for x!=1 and f(x)=-(1)/(3) for x=1 then f'(1)=

    Add: (3x^(2) - (1)/(5)x + (7)/(3)) + ((-1)/(4)x^(2) + (1)/(3)x - (1)/(6)) + (-2x^(2) - (1)/(2)x + 5)

    6(3x+2)-5(6x-1)=3(x-8)-5(7x-6)+9x

    ((2)/(3)x+4)((3)/(2)x+6)-((1)/(7)x-1)((1)/(7)x+1)