Home
Class 12
MATHS
(1-cos x)/(cos x(1+cos x ))=(1)/(cos x)-...

`(1-cos x)/(cos x(1+cos x ))=(1)/(cos x)-(2)/(1+cos x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{1 - \cos x}{\cos x(1 + \cos x)} = \frac{1}{\cos x} - \frac{2}{1 + \cos x} \] we will start by simplifying both sides and checking if they are equal. ### Step 1: Rewrite the left-hand side The left-hand side is \[ \frac{1 - \cos x}{\cos x(1 + \cos x)} \] ### Step 2: Rewrite the right-hand side The right-hand side is \[ \frac{1}{\cos x} - \frac{2}{1 + \cos x} \] To combine these fractions, we need a common denominator, which is \(\cos x(1 + \cos x)\). ### Step 3: Combine the right-hand side Rewriting the right-hand side with a common denominator: \[ \frac{1}{\cos x} = \frac{1(1 + \cos x)}{\cos x(1 + \cos x)} = \frac{1 + \cos x}{\cos x(1 + \cos x)} \] Now, rewrite the second term: \[ -\frac{2}{1 + \cos x} = -\frac{2\cos x}{\cos x(1 + \cos x)} \] Now, we can combine both fractions: \[ \frac{1 + \cos x - 2\cos x}{\cos x(1 + \cos x)} = \frac{1 - \cos x}{\cos x(1 + \cos x)} \] ### Step 4: Compare both sides Now we have: Left-hand side: \[ \frac{1 - \cos x}{\cos x(1 + \cos x)} \] Right-hand side: \[ \frac{1 - \cos x}{\cos x(1 + \cos x)} \] Since both sides are equal, we conclude that the given statement is true. ### Conclusion Thus, we have shown that \[ \frac{1 - \cos x}{\cos x(1 + \cos x)} = \frac{1}{\cos x} - \frac{2}{1 + \cos x} \] is indeed true. ---
Promotional Banner

Topper's Solved these Questions

  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (FILL IN THE BLANKS)|8 Videos
  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (MULTIPLE CHOICE QUESTIONS|18 Videos
  • PAIR OF STRAIGHT LINES

    ML KHANNA|Exercise SELF ASSESSMENT TEST|10 Videos
  • PERMUTATIONS AND COMBINATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST|20 Videos

Similar Questions

Explore conceptually related problems

int(1-cos x)/(cos x(1+cos x))dx

int(1+cos 2x)/(1-cos 2x)dx

tan^(-1){(sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x))}

If pi

Prove that: (i)tan^(-1){(sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x))}=(pi)/(4)+(x)/(2)

Simplest form of tan^(-1)((sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x))), pi lt x lt (3 pi)/(2) is:

Prove that: tan^(^^)(-1){(sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x))}=pi/4-x/2, if pi

(cos x)/(1-sin x)=(1+cos x+sin x)/(1+cos x-sin x)