Home
Class 12
MATHS
(1)/((x^(2)+1)^(2)(x^(2)+3))=(1)/(2)*(1)...

`(1)/((x^(2)+1)^(2)(x^(2)+3))=(1)/(2)*(1)/((x^(2)+1)^2)-(1)/(4)* (1)/(x^(2)+1)+ (1)/(4)*(1)/((x^(2)+3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{1}{(x^2 + 1)^2 (x^2 + 3)} = \frac{1}{2} \cdot \frac{1}{(x^2 + 1)^2} - \frac{1}{4} \cdot \frac{1}{(x^2 + 1)} + \frac{1}{4} \cdot \frac{1}{(x^2 + 3)}, \] we will verify if both sides are equal by simplifying the right-hand side and comparing it to the left-hand side. ### Step 1: Find a common denominator for the right-hand side The common denominator for the right-hand side is \((x^2 + 1)^2 (x^2 + 3)\). ### Step 2: Rewrite each term with the common denominator 1. The first term: \[ \frac{1}{2} \cdot \frac{1}{(x^2 + 1)^2} = \frac{1}{2} \cdot \frac{(x^2 + 3)}{(x^2 + 3)(x^2 + 1)^2} = \frac{(x^2 + 3)}{2(x^2 + 1)^2 (x^2 + 3)}. \] 2. The second term: \[ -\frac{1}{4} \cdot \frac{1}{(x^2 + 1)} = -\frac{1}{4} \cdot \frac{(x^2 + 1)(x^2 + 3)}{(x^2 + 1)(x^2 + 3)(x^2 + 1)} = -\frac{(x^2 + 1)(x^2 + 3)}{4(x^2 + 1)(x^2 + 3)(x^2 + 1)}. \] 3. The third term: \[ \frac{1}{4} \cdot \frac{1}{(x^2 + 3)} = \frac{1}{4} \cdot \frac{(x^2 + 1)^2}{(x^2 + 1)^2 (x^2 + 3)} = \frac{(x^2 + 1)^2}{4(x^2 + 1)^2 (x^2 + 3)}. \] ### Step 3: Combine the terms Now we can combine all three terms over the common denominator: \[ \frac{(x^2 + 3)}{2(x^2 + 1)^2 (x^2 + 3)} - \frac{(x^2 + 1)(x^2 + 3)}{4(x^2 + 1)(x^2 + 3)(x^2 + 1)} + \frac{(x^2 + 1)^2}{4(x^2 + 1)^2 (x^2 + 3)}. \] ### Step 4: Simplify the right-hand side Combine the numerators: \[ = \frac{2(x^2 + 3) - (x^2 + 1)(x^2 + 3) + (x^2 + 1)^2}{4(x^2 + 1)^2 (x^2 + 3)}. \] Now, simplify the numerator: 1. Expand \((x^2 + 1)(x^2 + 3)\): \[ = x^4 + 3x^2 + x^2 + 3 = x^4 + 4x^2 + 3. \] 2. Expand \((x^2 + 1)^2\): \[ = x^4 + 2x^2 + 1. \] Now substitute back into the numerator: \[ = 2(x^2 + 3) - (x^4 + 4x^2 + 3) + (x^4 + 2x^2 + 1). \] Combine like terms: \[ = 2x^2 + 6 - x^4 - 4x^2 - 3 + x^4 + 2x^2 + 1 = 0. \] ### Step 5: Final comparison Thus, the right-hand side simplifies to: \[ \frac{0}{4(x^2 + 1)^2 (x^2 + 3)} = 0. \] Since the left-hand side is not equal to zero, we can conclude: \[ \frac{1}{(x^2 + 1)^2 (x^2 + 3)} \neq 0. \] ### Conclusion The original statement is false. ---
Promotional Banner

Topper's Solved these Questions

  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (FILL IN THE BLANKS)|8 Videos
  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (MULTIPLE CHOICE QUESTIONS|18 Videos
  • PAIR OF STRAIGHT LINES

    ML KHANNA|Exercise SELF ASSESSMENT TEST|10 Videos
  • PERMUTATIONS AND COMBINATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST|20 Videos

Similar Questions

Explore conceptually related problems

(x+(1)/(x))^(2)-(x-(1)/(x))^(2)=? 1) x^(2)+(1)/(x^(2)) 2) 4 3) 2x^(2)+(1)/(2x^(2)) 4) 2x^(2)+4+(1)/(2x^(2))

((1)/(2)x^(2)-(1)/(2)y^(2)+(1)/(4)z^(2))-((1)/(3)x^2+(1)/(4)y^(2)+(1)/(2)z^(2))+((1)/(4)x^(2)+(1)/(3)y^(2)+(1)/(3)z^(2))

int(sqrt(x))/((1+x^(2))^((7)/(4)))dx=(A)(2)/(3)(x^((3)/(2)))/((x^(2)+1)^((3)/(4)))+C(B)(1)/(3)(x^((3)/(2)))/((x^(2)+1)^((3)/(4)))+C(C)(1)/(2)(x^((1)/(2)))/((x^(2)+1)^((3)/(4)))+C(D)(x^((3)/(2)))/((x^(2)+1)^((3)/(4)))+C

lim_(x rarr a){[(a^((1)/(2))+x^((1)/(2)))/(a^((1)/(4))-x^((1)/(4))))^(-1)-(2(ax)^((1)/(4)))/(x^((3)/(4))-a^((1)/(4))x^((1)/(2))+a^((1)/(2))x^((1)/(4))-a^((3)/(4)))]^(-1)-sqrt(2)^(log_(4)a)}^(8)

Find the sum to n terms of the following series: (x+(1)/(x))^(2)+(x^(2)+(1)/(x^(2)))^(2)+(x^(3)+(1)/(x^(3)))^(2)+(x^(4)+(1)/(x^(4)))^(2)+

If x^(4)+(1)/(x^(4))=194, find x^(3)+(1)/(x^(3)),x^(2)+(1)/(x^(2)) and x+(1)/(x)

If x^(4)+(1)/(x^(4))=194, find x^(3)+(1)/(x^(3)),x^(2)+(1)/(x^(2)) and x+(1)/(x)

If x^(2)+3x+1=0 then find x^(3)+(1)/(x^(3)),x^(4)+(1)/(x^(4)),x^(2)-(1)/(x^(2)),x^(2)+(1)/(x^(2))

If x+(1)/(x)=3, calcuate x^(2)+(1)/(x^(2)),x^(3)+(1)/(x^(3)) and x^(4)+(1)/(x^(4))