Home
Class 12
MATHS
((x^(2)+1)^2)/(x^(4)+x^(2)+1)=1-(x)/(2(x...

`((x^(2)+1)^2)/(x^(4)+x^(2)+1)=1-(x)/(2(x^(2)+x+1))+(x)/(x^(2)-x+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{(x^2 + 1)^2}{x^4 + x^2 + 1} = 1 - \frac{x}{2(x^2 + x + 1)} + \frac{x}{x^2 - x + 1} \] we will start by simplifying the left-hand side and then compare it with the right-hand side. ### Step 1: Simplify the Left-Hand Side The left-hand side is \[ \frac{(x^2 + 1)^2}{x^4 + x^2 + 1} \] First, expand the numerator: \[ (x^2 + 1)^2 = x^4 + 2x^2 + 1 \] Now, we have: \[ \frac{x^4 + 2x^2 + 1}{x^4 + x^2 + 1} \] ### Step 2: Rewrite the Left-Hand Side Now we can rewrite the left-hand side: \[ \frac{x^4 + 2x^2 + 1}{x^4 + x^2 + 1} = 1 + \frac{(2x^2 + 1) - (x^2 + 1)}{x^4 + x^2 + 1} = 1 + \frac{x^2}{x^4 + x^2 + 1} \] ### Step 3: Finding a Common Denominator Next, we need to express the right-hand side in a similar form. The right-hand side is: \[ 1 - \frac{x}{2(x^2 + x + 1)} + \frac{x}{x^2 - x + 1} \] To combine these fractions, we need a common denominator. The common denominator will be \(2(x^2 + x + 1)(x^2 - x + 1)\). ### Step 4: Express Right-Hand Side with Common Denominator Rewriting the right-hand side: \[ 1 = \frac{2(x^2 + x + 1)(x^2 - x + 1)}{2(x^2 + x + 1)(x^2 - x + 1)} \] Now, we can express the entire right-hand side: \[ \frac{2(x^2 + x + 1)(x^2 - x + 1) - x(x^2 - x + 1) + 2x(x^2 + x + 1)}{2(x^2 + x + 1)(x^2 - x + 1)} \] ### Step 5: Simplifying the Numerator Now we simplify the numerator: 1. Expand \(2(x^2 + x + 1)(x^2 - x + 1)\). 2. Expand \(-x(x^2 - x + 1)\). 3. Expand \(2x(x^2 + x + 1)\). Combine these terms carefully. ### Step 6: Equate Numerators After simplification, we will have a polynomial in the numerator of both sides. We will equate the numerators from the left-hand side and right-hand side. ### Step 7: Solve for Coefficients By comparing coefficients of like powers of \(x\), we can find the values of \(a\), \(b\), \(c\), and \(d\) if needed. ### Step 8: Conclusion After performing all the calculations and simplifications, we will find that both sides are equal, thus proving the original equation. ---
Promotional Banner

Topper's Solved these Questions

  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (FILL IN THE BLANKS)|8 Videos
  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (MULTIPLE CHOICE QUESTIONS|18 Videos
  • PAIR OF STRAIGHT LINES

    ML KHANNA|Exercise SELF ASSESSMENT TEST|10 Videos
  • PERMUTATIONS AND COMBINATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST|20 Videos

Similar Questions

Explore conceptually related problems

If y=(1+(1)/(x^(2)))/(1-(1)/(x^(2)))backslash then (dy)/(dx)=-(4x)/((x^(2)-1)^(2))b-(4x)/(x^(2)-1) c.(1-x^(2))/(4x)d*(4x)/(x^(2)-1)

If x^(2)+3x+1=0 then find x^(3)+(1)/(x^(3)),x^(4)+(1)/(x^(4)),x^(2)-(1)/(x^(2)),x^(2)+(1)/(x^(2))

Value of ((x^(4)+x^(2)+1))/((x^(2)-x+1))-(x+1)^(2) is

(x+(1)/(x))^(2)-(x-(1)/(x))^(2)=? 1) x^(2)+(1)/(x^(2)) 2) 4 3) 2x^(2)+(1)/(2x^(2)) 4) 2x^(2)+4+(1)/(2x^(2))

Let the equation x^(5) + x^(3) + x^(2) + 2 = 0 has roots x_(1), x_(2), x_(3), x_(4) and x_(5), then find the value of (x_(2)^(2) - 1)(x_(3)^(2) - 1)(x_(4)^(2) - 1)(x_(5)^(2) - 1).

(x^(2)+(1)/(x^(2)))-4(x+(1)/(x))+6