Home
Class 12
MATHS
The partial fractions of (3x^(4)+x^(3)+8...

The partial fractions of `(3x^(4)+x^(3)+8x^(2)+x+2)/(x(x^(2)+1)^2)` are …..

Text Solution

AI Generated Solution

The correct Answer is:
To find the partial fractions of the expression \(\frac{3x^4 + x^3 + 8x^2 + x + 2}{x(x^2 + 1)^2}\), we will follow these steps: ### Step 1: Set up the partial fraction decomposition Given the denominator \(x(x^2 + 1)^2\), we can express the fraction as: \[ \frac{3x^4 + x^3 + 8x^2 + x + 2}{x(x^2 + 1)^2} = \frac{A}{x} + \frac{Bx + C}{x^2 + 1} + \frac{Dx + E}{(x^2 + 1)^2} \] where \(A\), \(B\), \(C\), \(D\), and \(E\) are constants to be determined. ### Step 2: Multiply through by the common denominator Multiply both sides by \(x(x^2 + 1)^2\) to eliminate the denominators: \[ 3x^4 + x^3 + 8x^2 + x + 2 = A(x^2 + 1)^2 + (Bx + C)x(x^2 + 1) + (Dx + E)x \] ### Step 3: Expand the right-hand side Now we will expand the right-hand side: 1. \(A(x^2 + 1)^2 = A(x^4 + 2x^2 + 1)\) 2. \((Bx + C)x(x^2 + 1) = (Bx + C)(x^3 + x) = Bx^4 + Cx^3 + Bx^2 + Cx\) 3. \((Dx + E)x = Dx^2 + Ex\) Combining these, we have: \[ 3x^4 + x^3 + 8x^2 + x + 2 = (A + B)x^4 + (C)x^3 + (2A + B + D)x^2 + (C + E)x + A \] ### Step 4: Compare coefficients Now we compare the coefficients from both sides: 1. Coefficient of \(x^4\): \(A + B = 3\) 2. Coefficient of \(x^3\): \(C = 1\) 3. Coefficient of \(x^2\): \(2A + B + D = 8\) 4. Coefficient of \(x\): \(C + E = 1\) 5. Constant term: \(A = 2\) ### Step 5: Solve the equations From the constant term, we have: \[ A = 2 \] Substituting \(A = 2\) into the first equation: \[ 2 + B = 3 \implies B = 1 \] Now substituting \(A\) and \(B\) into the third equation: \[ 2(2) + 1 + D = 8 \implies 4 + 1 + D = 8 \implies D = 3 \] Now substituting \(C = 1\) into the fourth equation: \[ 1 + E = 1 \implies E = 0 \] ### Step 6: Write the partial fractions Now we have: - \(A = 2\) - \(B = 1\) - \(C = 1\) - \(D = 3\) - \(E = 0\) Thus, the partial fraction decomposition is: \[ \frac{2}{x} + \frac{x + 1}{x^2 + 1} + \frac{3x}{(x^2 + 1)^2} \] ### Final Answer The partial fractions of \(\frac{3x^4 + x^3 + 8x^2 + x + 2}{x(x^2 + 1)^2}\) are: \[ \frac{2}{x} + \frac{x + 1}{x^2 + 1} + \frac{3x}{(x^2 + 1)^2} \]
Promotional Banner

Topper's Solved these Questions

  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (TRUE AND FALSE)|5 Videos
  • PAIR OF STRAIGHT LINES

    ML KHANNA|Exercise SELF ASSESSMENT TEST|10 Videos
  • PERMUTATIONS AND COMBINATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST|20 Videos

Similar Questions

Explore conceptually related problems

Number of partial fractions in (x^(4)-5x^(2)+1)/((x^(2)+1)^(3)) is

Find the partial fractions of (2x+3)/(x^(4)+x^(2)+1) .

Statement I: The number of partial fractions of (x^(3)+x^(2)+1)/((x^(4)+x^(2)+1)) Statement II: The expression x^(4)+x^(2)+1 can be factorisea into (x^(2)+x+1)(x^(2)-x+1)

Number of partial fractions in ((x^(4)-5x^(2)+1)/((x^(2)+1)^(3))) is

The number of partial fractions of (2x+3)/((x^(2))(x^(2)-1))

If the partial fractions of (3x^(2)+4)/((x-1)^(3)) is (3)/(x-1)+(A)/((x-1)^(2))+(7)/((x-1)^(3)) , then A= _________.

((6x^(4)+8x^(3)+27x^(2)+7)/(3x^(2)+4x+1))