Home
Class 12
MATHS
If a1, a2 an ,\ a(n+1) are in GP and a1>...

If `a_1, a_2 a_n ,\ a_(n+1)` are in GP and `a_1>0AAI ,\ t h e n` `|loga_nloga_(n+2)loga_(n+4)loga_(n+6)loga_(n+8)loga_(n+10)loga_(n+12)loga_(n+14)loga_(n+16)|` is equal to- `0` b. `nloga_n` c.`n(n+1)loga_n` d. none of these

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN|Exercise EX -JA|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ALLEN|Exercise All Questions|147 Videos

Similar Questions

Explore conceptually related problems

If a_1,a_2,a_3,.....a_n.... are in G.P. then the determinant 'Delta=|[loga_n , loga_(n+1),loga_(n+2)],[loga_(n+3),loga_(n+4),loga_(n+5)],[loga_(n+6),loga_(n+7),loga_(n+8)]| is equal to- (A) -2 (B) 1 (C) -1 (D) 0

If a_1, a_2, a_3,....... are in G.P. then the value of determinant |(log(a_n), log(a_(n+1)), log(a_(n+2))), (log(a_(n+3)), log(a_(n+4)), log(a_(n+5))), (log(a_(n+6)), log(a_(n+7)), log(a_(n+8)))| equals (A) 0 (B) 1 (C) 2 (D) 3

Q. If log_x a, a^(x/2) and log_b x are in G.P. then x is equal to (1) log_a(log_b a) (2) log_a(log_e a)+log_a log_b b (3) -log_a(log_a b) (4) none of these

If a_1, a_2, a_3, ,a_(2n+1) are in A.P., then (a_(2n+1)-a_1)/(a_(2n+1)+a_1)+(a_(2n)-a_2)/(a_(2n)+a_2)++(a_(n+2)-a_n)/(a_(n+2)+a_n) is equal to a. (n(n+1))/2xx(a_2-a_1)/(a_(n+1)) b. (n(n+1))/2 c. (n+1)(a_2-a_1) d. none of these

2(loga+loga^2+loga^3+loga^4+................+loga^n) is equal to

If a_1, a_2, a_3,.....a_n are in H.P. and a_1 a_2+a_2 a_3+a_3 a_4+.......a_(n-1) a_n=ka_1 a_n , then k is equal to

Prove that: log_a x=log_bx xx log_c b xx…xx log_n m xx log_a n

If a ,b ,c are in G.P., then prove that loga^n ,logb^n ,logc^n are in A.P.

If a_1,a_2,a_3….a_(2n+1) are in A.P then (a_(2n+1)-a_1)/(a_(2n+1)+a_1)+(a_2n-a_2)/(a_(2n)+a_2)+....+(a_(n+2)-a_n)/(a_(n+2)+a_n) is equal to

Let a_1, a_2, a_3, ...a_(n) be an AP. then: 1 / (a_1 a_n) + 1 / (a_2 a_(n-1)) + 1 /(a_3a_(n-2))+......+ 1 /(a_(n) a_1) =

ALLEN-DETERMINANTS-All Questions
  1. The number of real values of x satisfying |(x,3x+2,2x-1),(2x-1,4x,3x+1...

    Text Solution

    |

  2. If a ,\ b ,\ c are pth, qth and rth terms of a GP, the |loga p1logb q1...

    Text Solution

    |

  3. If a1, a2 an ,\ a(n+1) are in GP and a1>0AAI ,\ t h e n |loganloga(n+2...

    Text Solution

    |

  4. If p x^4+q x^3+r x^2+s x+t=|x^2+3xx-1x+3x+1 2-xx-3x-3x+4 3x| then t is...

    Text Solution

    |

  5. For positive numbers x ,\ y\ a n d\ z the numerical value of the deter...

    Text Solution

    |

  6. If a, b,c> 0 and x,y,z in RR then the determinant |((a^x+a^-x)^2,(a...

    Text Solution

    |

  7. For determinant |((a^2+b^2)/c,c,c),(a,(b^2+c^2)/a,a),(b,b,(c^2+a^2)/b...

    Text Solution

    |

  8. The equation |{:((1+x)^(2),(1-x)^(2),-(2+x^(2))),(2x+1,3x,1-5x),(x+1,2...

    Text Solution

    |

  9. Let a determinant is given by A=|[a,b,c],[p,q,r],[x,y,z]| and suppose ...

    Text Solution

    |

  10. If a!=b!=c\ a n d\ |{:(a, b, c), (a^2,b^2,c^2), (b+c, c+a, a+b):}|=0 t...

    Text Solution

    |

  11. Without expanding show that |b^2c^2 bc b+cc^2a^2 ca c+a a^2b^2a b a+...

    Text Solution

    |

  12. If f(x)=|(1, x, x+1), (2x, x(x-1), (x+1)x), (3x(x-1), x(x-1)(x-2), (x+...

    Text Solution

    |

  13. The value of the determinant |{:(a, b,0), (0,a, b),(b,0,a):}| is equal...

    Text Solution

    |

  14. An equilateral triangle has each of its sides of length 6 cm. If (x1, ...

    Text Solution

    |

  15. If the system of equations x + 2y + 3z = 4, x+ py+ 2z = 3, x+ 4y +u z ...

    Text Solution

    |

  16. The maximum value of Δ= ∣ ∣ ∣ ​ 1 1 1+cosθ ​ 1 1+sinθ 1 ​ 1...

    Text Solution

    |

  17. If f^(prime)(x)=|[mx, mx-p, m x+p], [n, n+p, n-p], [mx+2n, m x+2n+p, m...

    Text Solution

    |

  18. The determinant |a b aalpha+bb c balpha+c aalpha+bbalpha+c0|=0, if a ...

    Text Solution

    |

  19. Let f(x)=|1+sin^2x cos^2x4s in2xsin^2\ \ x1+cos^2x4s in2xsin^2xcos^...

    Text Solution

    |

  20. The parameter on which the value of the determinant |[1,a...

    Text Solution

    |