Home
Class 12
MATHS
If cot theta=(4)/(3), then find the val...

If ` cot theta=(4)/(3)`, then find the value of `sin theta,cos theta` and `cos ectheta` in first quadrant.
If `sin theta+cos ec theta=2` then find the value of `sin^(8 )theta+cos ec^(8)theta`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the instructions given in the video transcript and derive the required values. ### Step 1: Find sin θ, cos θ, and cosec θ Given: \[ \cot \theta = \frac{4}{3} \] From the definition of cotangent: \[ \cot \theta = \frac{\text{adjacent}}{\text{opposite}} = \frac{AB}{AC} \] Let \( AB = 4 \) and \( AC = 3 \). Using the Pythagorean theorem to find the hypotenuse \( BC \): \[ BC = \sqrt{AB^2 + AC^2} = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \] Now we can find \( \sin \theta \) and \( \cos \theta \): \[ \sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{AC}{BC} = \frac{3}{5} \] \[ \cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{AB}{BC} = \frac{4}{5} \] Now, we can find \( \csc \theta \): \[ \csc \theta = \frac{1}{\sin \theta} = \frac{1}{\frac{3}{5}} = \frac{5}{3} \] ### Step 2: Verify the values We have: - \( \sin \theta = \frac{3}{5} \) - \( \cos \theta = \frac{4}{5} \) - \( \csc \theta = \frac{5}{3} \) ### Step 3: Find \( \sin \theta + \csc \theta \) Given: \[ \sin \theta + \csc \theta = 2 \] Substituting the values: \[ \frac{3}{5} + \frac{5}{3} = 2 \] To verify: Finding a common denominator (15): \[ \frac{3 \times 3}{5 \times 3} + \frac{5 \times 5}{3 \times 5} = \frac{9}{15} + \frac{25}{15} = \frac{34}{15} \neq 2 \] This indicates that the assumption \( \sin \theta + \csc \theta = 2 \) is not satisfied with the initial values. ### Step 4: Find \( \sin^8 \theta + \csc^8 \theta \) Since \( \sin \theta + \csc \theta = 2 \) holds true, we can square both sides: \[ (\sin \theta + \csc \theta)^2 = 2^2 \] Expanding: \[ \sin^2 \theta + \csc^2 \theta + 2 \sin \theta \csc \theta = 4 \] Since \( \csc \theta = \frac{1}{\sin \theta} \): \[ \sin^2 \theta + \frac{1}{\sin^2 \theta} + 2 = 4 \] Thus: \[ \sin^2 \theta + \frac{1}{\sin^2 \theta} = 2 \] Let \( x = \sin^2 \theta \): \[ x + \frac{1}{x} = 2 \] Multiplying through by \( x \): \[ x^2 - 2x + 1 = 0 \] Factoring: \[ (x - 1)^2 = 0 \Rightarrow x = 1 \Rightarrow \sin^2 \theta = 1 \Rightarrow \sin \theta = 1 \] Thus: \[ \csc \theta = 1 \] ### Step 5: Calculate \( \sin^8 \theta + \csc^8 \theta \) Since \( \sin \theta = 1 \) and \( \csc \theta = 1 \): \[ \sin^8 \theta + \csc^8 \theta = 1^8 + 1^8 = 1 + 1 = 2 \] ### Final Answer: \[ \sin^8 \theta + \csc^8 \theta = 2 \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN|Exercise EX-01|17 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX-02|19 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX -JA|8 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos
  • DETERMINANTS

    ALLEN|Exercise All Questions|115 Videos

Similar Questions

Explore conceptually related problems

If 3 sin theta + 4 cos theta=5 , then find the value of 4 sin theta-3 cos theta .

If cot theta = (3)/(4) find the value of : ( sin theta- cos theta)/(sin theta+cos theta)

Let sin theta-cos theta=1 then the value of sin^(3) theta-cos^(3)theta is :

Given : 4 sintheta = 3 cos theta , find the value of: sin theta

If a cos theta-b sin theta = c, then find the value of a sin theta + b cos theta.

If tan theta=-3/4 and pi/2 < theta < pi, find the values of sin theta,cos theta and cot theta .

If sin theta = cos theta find the value of : 3 tan ^(2) theta+ 2 sin ^(2) theta -1

If cos theta+cos^(2)theta=1 , the value of sin^(2)theta+sin^(4)theta is

Find the value of (1+cos theta+sin theta)/(1-cos theta +sin theta)

If A = sin^2 theta+ cos^4 theta , then for all real values of theta