Home
Class 12
MATHS
Find the maximum and minimum value of 5c...

Find the maximum and minimum value of `5cos theta+3sin(theta+(pi)/(6))` for all real values of `theta`. .

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum and minimum values of the expression \( 5 \cos \theta + 3 \sin\left(\theta + \frac{\pi}{6}\right) \), we can follow these steps: ### Step 1: Rewrite the expression Start by rewriting the sine term using the sine addition formula: \[ \sin\left(\theta + \frac{\pi}{6}\right) = \sin\theta \cos\frac{\pi}{6} + \cos\theta \sin\frac{\pi}{6} \] Substituting the values of \(\cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}\) and \(\sin\frac{\pi}{6} = \frac{1}{2}\), we have: \[ \sin\left(\theta + \frac{\pi}{6}\right) = \sin\theta \cdot \frac{\sqrt{3}}{2} + \cos\theta \cdot \frac{1}{2} \] ### Step 2: Substitute back into the expression Now substitute this back into the original expression: \[ 5 \cos \theta + 3 \left( \sin\theta \cdot \frac{\sqrt{3}}{2} + \cos\theta \cdot \frac{1}{2} \right) \] This simplifies to: \[ 5 \cos \theta + \frac{3\sqrt{3}}{2} \sin \theta + \frac{3}{2} \cos \theta \] Combining the cosine terms: \[ \left(5 + \frac{3}{2}\right) \cos \theta + \frac{3\sqrt{3}}{2} \sin \theta = \frac{13}{2} \cos \theta + \frac{3\sqrt{3}}{2} \sin \theta \] ### Step 3: Identify coefficients Let \( a = \frac{3\sqrt{3}}{2} \) and \( b = \frac{13}{2} \). We can express the equation as: \[ a \sin \theta + b \cos \theta \] ### Step 4: Find maximum and minimum values The maximum and minimum values of the expression \( a \sin \theta + b \cos \theta \) can be found using the formula: - Maximum value: \( \sqrt{a^2 + b^2} \) - Minimum value: \( -\sqrt{a^2 + b^2} \) Calculating \( a^2 + b^2 \): \[ a^2 = \left(\frac{3\sqrt{3}}{2}\right)^2 = \frac{27}{4} \] \[ b^2 = \left(\frac{13}{2}\right)^2 = \frac{169}{4} \] Thus, \[ a^2 + b^2 = \frac{27}{4} + \frac{169}{4} = \frac{196}{4} = 49 \] ### Step 5: Calculate the square root Now, taking the square root: \[ \sqrt{49} = 7 \] ### Step 6: State the maximum and minimum values Therefore, the maximum value is \( 7 \) and the minimum value is \( -7 \). ### Final Answer: - Maximum value: \( 7 \) - Minimum value: \( -7 \)
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN|Exercise EX-01|17 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX-02|19 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX -JA|8 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos
  • DETERMINANTS

    ALLEN|Exercise All Questions|115 Videos

Similar Questions

Explore conceptually related problems

Find maximum and minium value of 5costheta+3sintheta(theta+pi/6) for all real values of theta .

The maximum values of 3 costheta+5sin(theta-(pi)/(6)) for any real value of theta is:

If x=cos^2theta+sin^4theta then for all real values of theta

The maximum and minimum values of -4le5cos theta+3cos(theta+(pi)/(3))+3le10 are respectively

The maximum and minimum values of -4le5cos theta+3cos(theta+(pi)/(3))+3le10 are respectively

Minimum value of cos2theta+costheta for all real value of theta is

Find maximum and minimum values of 2sin(theta+(pi)/(6))+sqrt(3)cos(theta-(pi)/(6))

Find the maximum and minimum values of cos^2theta-6sinthetacostheta+3sin^2theta+2.

Find the maximum and minimum values of cos^2theta-6s inthetacostheta+3sin^2theta+2.

Find the maximum and minimum values of the expression: a cos theta + b sin theta