Home
Class 12
MATHS
Let k=1^@, then prove that sum(n=0)^88 ...

Let `k=1^@`, then prove that `sum_(n=0)^88 1/(cosnk* cos(n+1)k)=cosk/sin^2k`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN|Exercise EX-JM|7 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX -JA|8 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX-S1|15 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos
  • DETERMINANTS

    ALLEN|Exercise All Questions|115 Videos

Similar Questions

Explore conceptually related problems

Prove that: sum_(k=1)^(100)sin(k x)cos(101-k)x=50"sin"(101 x)

Prove that: sum_(k=1)^(100)sin(k x)cos(101-k)x=50"sin"(101 x)

Prove that Sigma_(K=0)^(n) ""^nC_(k) sin K x cos (n-K)x = 2^(n-1) sin x.

sum_(k=0)^(5)(-1)^(k)2k

Prove that sum_(k=1)^(n-1) ""^(n)C_(k)[cos k x. cos (n+k)x+sin(n-k)x.sin(2n-k)x]=(2^(n)-2)cos nx .

If k a n d n are positive integers and s_k=1^k+2^k+3^k++n^k , then prove that sum_(r=1)^m^(m+1)C_r s_r=(n+1)^(m+1)-(n+1)dot

Prove that sum_(k=1)^(n-1)(n-k)cos(2kpi)/n=-n/2 , where ngeq3 is an integer

Find the sum_(k=1)^(oo) sum_(n=1)^(oo)k/(2^(n+k)) .

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

Evaluate : sum_(k=1)^n (2^k+3^(k-1))