Home
Class 12
MATHS
If M and m denotes maximum and minimum v...

If `M` and `m` denotes maximum and minimum value of `sqrt(49cos^2theta + sin^2theta) + sqrt(49sin^2theta+cos^2theta` then find the value of `(M+m)` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum (M) and minimum (m) values of the expression: \[ u = \sqrt{49 \cos^2 \theta + \sin^2 \theta} + \sqrt{49 \sin^2 \theta + \cos^2 \theta} \] ### Step 1: Rewrite the expression We can rewrite the expression for \( u \) as follows: \[ u = \sqrt{48 \cos^2 \theta + 1} + \sqrt{48 \sin^2 \theta + 1} \] ### Step 2: Square both sides To simplify the calculations, we will square \( u \): \[ u^2 = \left(\sqrt{48 \cos^2 \theta + 1} + \sqrt{48 \sin^2 \theta + 1}\right)^2 \] ### Step 3: Expand the squared expression Using the formula \( (a + b)^2 = a^2 + b^2 + 2ab \): \[ u^2 = (48 \cos^2 \theta + 1) + (48 \sin^2 \theta + 1) + 2\sqrt{(48 \cos^2 \theta + 1)(48 \sin^2 \theta + 1)} \] ### Step 4: Combine terms Combine the terms: \[ u^2 = 48 (\cos^2 \theta + \sin^2 \theta) + 2 + 2\sqrt{(48 \cos^2 \theta + 1)(48 \sin^2 \theta + 1)} \] Using the identity \( \cos^2 \theta + \sin^2 \theta = 1 \): \[ u^2 = 48 + 2 + 2\sqrt{(48 \cos^2 \theta + 1)(48 \sin^2 \theta + 1)} \] ### Step 5: Simplify further This gives us: \[ u^2 = 50 + 2\sqrt{(48 \cos^2 \theta + 1)(48 \sin^2 \theta + 1)} \] ### Step 6: Find the maximum and minimum values To find the maximum and minimum values of \( u \), we need to analyze the term \( \sqrt{(48 \cos^2 \theta + 1)(48 \sin^2 \theta + 1)} \). 1. **Maximum value of \( \sin^2 2\theta \)**: The maximum value of \( \sin^2 2\theta \) is 1. Thus: \[ \sqrt{(48 \cdot 1 + 1)(48 \cdot 0 + 1)} = \sqrt{49} = 7 \] So, the maximum value \( M \) occurs when \( \sin^2 2\theta = 1 \): \[ u = \sqrt{50 + 2 \cdot 7} = \sqrt{64} = 8 \] 2. **Minimum value of \( \sin^2 2\theta \)**: The minimum value of \( \sin^2 2\theta \) is 0. Thus: \[ \sqrt{(48 \cdot 0 + 1)(48 \cdot 1 + 1)} = \sqrt{1 \cdot 49} = 7 \] So, the minimum value \( m \) occurs when \( \sin^2 2\theta = 0 \): \[ u = \sqrt{50 + 0} = \sqrt{50} = 7 \] ### Step 7: Calculate \( M + m \) Now, we can find \( M + m \): \[ M + m = 10 + 8 = 18 \] ### Final Answer Thus, the value of \( M + m \) is: \[ \boxed{18} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN|Exercise EX-JM|7 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX -JA|8 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX-S1|15 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos
  • DETERMINANTS

    ALLEN|Exercise All Questions|115 Videos

Similar Questions

Explore conceptually related problems

If 2sin^2theta-cos^2theta=2, find the value of theta.

If 2sin^(2)theta-cos^(2)theta=2 , then find the value of theta .

Find the maximum and minimum values of cos^2theta-6sinthetacostheta+3sin^2theta+2.

Find the maximum and minimum values of cos^2theta-6s inthetacostheta+3sin^2theta+2.

Find the maximum and minimum values of the expression: a cos theta + b sin theta

Find the maximum and minimum value of cos^(2) theta- 6 sin theta cos theta + 3 sin^(2) theta + 2 .

If abs(cos theta{sin theta+sqrt(sin^2theta+sin^2alpha)})lek , then the value of k

cos theta sqrt(1-sin^(2)theta)=

The minimum and maximum values of expression y=costheta(sintheta+sqrt(sin^2theta+sin^2alpha))

The value of the expression cos^6theta+sin^6theta+3sin^2thetacos^2theta=